Leverage Score Sampling for Complete Mode Coverage in Generative
Adversarial Networks
- URL: http://arxiv.org/abs/2104.02373v1
- Date: Tue, 6 Apr 2021 09:00:38 GMT
- Title: Leverage Score Sampling for Complete Mode Coverage in Generative
Adversarial Networks
- Authors: Joachim Schreurs, Hannes De Meulemeester, Micha\"el Fanuel, Bart De
Moor and Johan A.K. Suykens
- Abstract summary: A generative model may overlook underrepresented modes that are less frequent in the empirical data distribution.
We propose a sampling procedure based on ridge leverage scores which significantly improves mode coverage when compared to standard methods.
- Score: 11.595070613477548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Commonly, machine learning models minimize an empirical expectation. As a
result, the trained models typically perform well for the majority of the data
but the performance may deteriorate on less dense regions of the dataset. This
issue also arises in generative modeling. A generative model may overlook
underrepresented modes that are less frequent in the empirical data
distribution. This problem is known as complete mode coverage. We propose a
sampling procedure based on ridge leverage scores which significantly improves
mode coverage when compared to standard methods and can easily be combined with
any GAN. Ridge Leverage Scores (RLSs) are computed by using an explicit feature
map, associated with the next-to-last layer of a GAN discriminator or of a
pre-trained network, or by using an implicit feature map corresponding to a
Gaussian kernel. Multiple evaluations against recent approaches of complete
mode coverage show a clear improvement when using the proposed sampling
strategy.
Related papers
- Data Pruning in Generative Diffusion Models [2.0111637969968]
Generative models aim to estimate the underlying distribution of the data, so presumably they should benefit from larger datasets.
We show that eliminating redundant or noisy data in large datasets is beneficial particularly when done strategically.
arXiv Detail & Related papers (2024-11-19T14:13:25Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
Current deep learning approaches rely on generative models that yield exact sample likelihoods.
This work introduces a method that lifts this restriction and opens the possibility to employ highly expressive latent variable models.
We experimentally validate our approach in data-free Combinatorial Optimization and demonstrate that our method achieves a new state-of-the-art on a wide range of benchmark problems.
arXiv Detail & Related papers (2024-06-03T17:55:02Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Entropy-MCMC: Sampling from Flat Basins with Ease [10.764160559530849]
We introduce an auxiliary guiding variable, the stationary distribution of which resembles a smoothed posterior free from sharp modes, to lead the MCMC sampler to flat basins.
By integrating this guiding variable with the model parameter, we create a simple joint distribution that enables efficient sampling with minimal computational overhead.
Empirical results demonstrate that our method can successfully sample from flat basins of the posterior, and outperforms all compared baselines on multiple benchmarks.
arXiv Detail & Related papers (2023-10-09T04:40:20Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
We develop a novel approach to producing more sample-efficient estimators of expectations in the PL model.
We illustrate our findings both theoretically and empirically using real-world recommendation data from Amazon Music and the Yahoo learning-to-rank challenge.
arXiv Detail & Related papers (2022-05-12T11:15:47Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
We present an approach for continual learning based on fully probabilistic (or generative) models of machine learning.
We propose a pseudo-rehearsal approach using a Gaussian Mixture Model (GMM) instance for both generator and classifier functionalities.
We show that GMR achieves state-of-the-art performance on common class-incremental learning problems at very competitive time and memory complexity.
arXiv Detail & Related papers (2021-04-19T12:26:26Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.