Robust Finite Mixture Regression for Heterogeneous Targets
- URL: http://arxiv.org/abs/2010.05430v1
- Date: Mon, 12 Oct 2020 03:27:07 GMT
- Title: Robust Finite Mixture Regression for Heterogeneous Targets
- Authors: Jian Liang, Kun Chen, Ming Lin, Changshui Zhang, Fei Wang
- Abstract summary: We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
- Score: 70.19798470463378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finite Mixture Regression (FMR) refers to the mixture modeling scheme which
learns multiple regression models from the training data set. Each of them is
in charge of a subset. FMR is an effective scheme for handling sample
heterogeneity, where a single regression model is not enough for capturing the
complexities of the conditional distribution of the observed samples given the
features. In this paper, we propose an FMR model that 1) finds sample clusters
and jointly models multiple incomplete mixed-type targets simultaneously, 2)
achieves shared feature selection among tasks and cluster components, and 3)
detects anomaly tasks or clustered structure among tasks, and accommodates
outlier samples. We provide non-asymptotic oracle performance bounds for our
model under a high-dimensional learning framework. The proposed model is
evaluated on both synthetic and real-world data sets. The results show that our
model can achieve state-of-the-art performance.
Related papers
- Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data.
Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts.
We propose Task Groupings Regularization, a novel approach that benefits from model heterogeneity by grouping and aligning conflicting tasks.
arXiv Detail & Related papers (2024-05-26T13:11:55Z) - Representation Surgery for Multi-Task Model Merging [57.63643005215592]
Multi-task learning (MTL) compresses the information from multiple tasks into a unified backbone to improve computational efficiency and generalization.
Recent work directly merges multiple independently trained models to perform MTL instead of collecting their raw data for joint training.
By visualizing the representation distribution of existing model merging schemes, we find that the merged model often suffers from the dilemma of representation bias.
arXiv Detail & Related papers (2024-02-05T03:39:39Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Training Experimentally Robust and Interpretable Binarized Regression
Models Using Mixed-Integer Programming [3.179831861897336]
We present a model-based approach to training robust and interpretable binarized regression models for multiclass classification tasks.
Our MIP model balances the optimization of prediction margin and model size by using a weighted objective.
We show the effectiveness of training robust and interpretable binarized regression models using MIP.
arXiv Detail & Related papers (2021-12-01T11:53:08Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
We present an approach for continual learning based on fully probabilistic (or generative) models of machine learning.
We propose a pseudo-rehearsal approach using a Gaussian Mixture Model (GMM) instance for both generator and classifier functionalities.
We show that GMR achieves state-of-the-art performance on common class-incremental learning problems at very competitive time and memory complexity.
arXiv Detail & Related papers (2021-04-19T12:26:26Z) - Split Modeling for High-Dimensional Logistic Regression [0.2676349883103404]
A novel method is proposed to an ensemble logistic classification model briefly compiled.
Our method learns how to exploit the bias-off resulting in excellent prediction accuracy.
An open-source software library implementing the proposed method is discussed.
arXiv Detail & Related papers (2021-02-17T05:57:26Z) - Gaussian Function On Response Surface Estimation [12.35564140065216]
We propose a new framework for interpreting (features and samples) black-box machine learning models via a metamodeling technique.
The metamodel can be estimated from data generated via a trained complex model by running the computer experiment on samples of data in the region of interest.
arXiv Detail & Related papers (2021-01-04T04:47:00Z) - One for More: Selecting Generalizable Samples for Generalizable ReID
Model [92.40951770273972]
This paper proposes a one-for-more training objective that takes the generalization ability of selected samples as a loss function.
Our proposed one-for-more based sampler can be seamlessly integrated into the ReID training framework.
arXiv Detail & Related papers (2020-12-10T06:37:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.