論文の概要: Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2104.02633v1
- Date: Tue, 6 Apr 2021 16:07:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-07 14:01:45.346337
- Title: Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation
- Title(参考訳): セマンティックセグメンテーションにおける教師なし領域適応のための潜在空間正規化
- Authors: Francesco Barbato, Marco Toldo, Umberto Michieli, Pietro Zanuttigh
- Abstract要約: セマンティックセグメンテーションにおけるドメインの不一致を減らすために、機能レベルの空間形成正規化戦略を紹介します。
このような手法の有効性を自律運転環境で検証する。
- 参考スコア(独自算出の注目度): 14.050836886292869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural networks for semantic segmentation allow to achieve
outstanding accuracy, however they also have a couple of major drawbacks:
first, they do not generalize well to distributions slightly different from the
one of the training data; second, they require a huge amount of labeled data
for their optimization. In this paper, we introduce feature-level space-shaping
regularization strategies to reduce the domain discrepancy in semantic
segmentation. In particular, for this purpose we jointly enforce a clustering
objective, a perpendicularity constraint and a norm alignment goal on the
feature vectors corresponding to source and target samples. Additionally, we
propose a novel measure able to capture the relative efficacy of an adaptation
strategy compared to supervised training. We verify the effectiveness of such
methods in the autonomous driving setting achieving state-of-the-art results in
multiple synthetic-to-real road scenes benchmarks.
- Abstract(参考訳): セマンティックセグメンテーションのための深い畳み込みニューラルネットワークは、優れた精度を実現することができるが、いくつかの大きな欠点もある。
本稿では,意味セグメンテーションにおける領域差を低減するために,機能レベルの空間整形正規化戦略を提案する。
特に、この目的のために、ソースおよびターゲットサンプルに対応する特徴ベクトルに対して、クラスタリング目標、垂直性制約、およびノルムアライメント目標を共同で実施する。
また,適応戦略の相対的効果を教師あり訓練と比較して捉えることのできる新しい尺度を提案する。
我々は,複数の合成実走行シーンベンチマークにおいて,最先端の実績を達成できる自律運転設定におけるそのような手法の有効性を検証する。
関連論文リスト
- Adversarial Semi-Supervised Domain Adaptation for Semantic Segmentation:
A New Role for Labeled Target Samples [7.199108088621308]
我々は、ラベル付き対象データがソースサンプルまたは実際のターゲットサンプルとして振る舞う場合に、新たなトレーニング目標損失を設計する。
提案手法を支援するために,ソースデータとラベル付きターゲットデータを混合し,同じ適応プロセスを適用する補完手法を検討する。
本稿では,GTA5,SynTHIA,Cityscapesのベンチマーク実験を通じて得られた知見を紹介する。
論文 参考訳(メタデータ) (2023-12-12T15:40:22Z) - Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
オピニオンターゲット抽出(OTE)またはアスペクト抽出(AE)は意見マイニングの基本的な課題である。
最近の研究は、現実世界のシナリオでよく見られるクロスドメインのOTEに焦点を当てている。
そこで本稿では,ドメイン固有の教師と学生のネットワークから出力されるモデルが未学習のターゲットデータと一致しない対象サンプルを選択するためのSSLアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-28T16:31:17Z) - MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
Segmentation [98.09845149258972]
セマンティックセグメンテーションタスクに関するドメイン適応を支援するために,アクティブなサンプル選択を導入する。
これらのサンプルを手動でアノテートする作業量が少ないため、ターゲット領域分布の歪みを効果的に緩和することができる。
長期分布問題を緩和するために、強力な半教師付きドメイン適応戦略を提案する。
論文 参考訳(メタデータ) (2023-01-18T07:55:22Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
セマンティックセグメンテーションに特化したトレーニングモデルは、大量のピクセル単位のアノテートデータを必要とする。
教師なしドメイン適応手法は、ラベル付きソースとラベルなしターゲットデータとの間の特徴分布の整合化を目的としている。
以前の研究は、対象データにスパース単一ピクセルアノテーションという形で、人間のインタラクションをこのプロセスに含めようと試みていた。
アクティブな選択による注釈付きポイントを用いた意味的セグメンテーションのための新しいドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-01T01:52:28Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Semi-supervised Domain Adaptation for Semantic Segmentation [3.946367634483361]
セマンティックセグメンテーションにおけるクロスドメインとイントラドメインのギャップに対処する2段階の半教師付き二重ドメイン適応(SSDDA)手法を提案する。
提案手法は,2つの共通合成-実合成セマンティックセグメンテーションベンチマークにおいて,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-20T16:13:00Z) - Adapting Segmentation Networks to New Domains by Disentangling Latent
Representations [14.050836886292869]
ドメイン適応アプローチは、ラベルを持つソースドメインから取得した知識を関連するラベルを持つターゲットドメインに転送する役割を担っている。
本稿では,教師付きトレーニングと比較して適応戦略の相対的有効性を捉えるための新しい性能指標を提案する。
論文 参考訳(メタデータ) (2021-08-06T09:43:07Z) - Domain Adaptation for Semantic Segmentation via Patch-Wise Contrastive
Learning [62.7588467386166]
ドメイン間で構造的に類似するラベルパッチの機能を調整することで、ドメインギャップを埋めるためにコントラスト学習を利用する。
私たちのアプローチは、常に2つの困難なドメイン適応セグメンテーションタスクにおいて、最先端の非監視および半監督メソッドを上回ります。
論文 参考訳(メタデータ) (2021-04-22T13:39:12Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
畳み込みニューラルネットワークに基づくアプローチは、セマンティックセグメンテーションにおいて顕著な進歩を遂げた。
この制限に対処するために、グラフィックエンジンから生成された注釈付きデータを使用してセグメンテーションモデルをトレーニングする。
ドメイン間およびドメイン間ギャップを最小化する2段階の自己教師付きドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2020-04-16T15:24:11Z) - Domain Adaptation by Class Centroid Matching and Local Manifold
Self-Learning [8.316259570013813]
本稿では,対象領域のデータ分散構造を徹底的に探索できる新しい領域適応手法を提案する。
対象領域内の同一クラスタ内のサンプルを個人ではなく全体とみなし、クラスセントロイドマッチングにより擬似ラベルを対象クラスタに割り当てる。
提案手法の目的関数を理論的収束保証を用いて解くために,効率的な反復最適化アルゴリズムを設計した。
論文 参考訳(メタデータ) (2020-03-20T16:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。