論文の概要: Personalized Entity Resolution with Dynamic Heterogeneous Knowledge
Graph Representations
- arxiv url: http://arxiv.org/abs/2104.02667v1
- Date: Tue, 6 Apr 2021 16:58:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-07 14:12:45.518527
- Title: Personalized Entity Resolution with Dynamic Heterogeneous Knowledge
Graph Representations
- Title(参考訳): 動的異種知識グラフ表現を用いたパーソナライズされたエンティティ解決
- Authors: Ying Lin, Han Wang, Jiangning Chen, Tong Wang, Yue Liu, Heng Ji, Yang
Liu, Premkumar Natarajan
- Abstract要約: 製品ランキングの精度を向上させるためにパーソナライズされた機能を活用する新しいフレームワークを提案する。
まず、顧客購入履歴と製品知識グラフからオープンソースの異種知識グラフを作成し、顧客と製品の埋め込みを共同で学習します。
その後、プロダクト、顧客、履歴の表現をニューラルリランキングモデルに組み込んで、どの候補が特定の顧客に購入される可能性が最も高いかを予測します。
- 参考スコア(独自算出の注目度): 40.37976161857134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing popularity of Virtual Assistants poses new challenges for Entity
Resolution, the task of linking mentions in text to their referent entities in
a knowledge base. Specifically, in the shopping domain, customers tend to use
implicit utterances (e.g., "organic milk") rather than explicit names, leading
to a large number of candidate products. Meanwhile, for the same query,
different customers may expect different results. For example, with "add milk
to my cart", a customer may refer to a certain organic product, while some
customers may want to re-order products they regularly purchase. To address
these issues, we propose a new framework that leverages personalized features
to improve the accuracy of product ranking. We first build a cross-source
heterogeneous knowledge graph from customer purchase history and product
knowledge graph to jointly learn customer and product embeddings. After that,
we incorporate product, customer, and history representations into a neural
reranking model to predict which candidate is most likely to be purchased for a
specific customer. Experiments show that our model substantially improves the
accuracy of the top ranked candidates by 24.6% compared to the state-of-the-art
product search model.
- Abstract(参考訳): バーチャルアシスタントの普及は、知識ベースにおける参照エンティティにテキスト内の参照をリンクするタスクであるEntity Resolutionに新たな課題をもたらす。
特にショッピングドメインでは、顧客は明示的な名前ではなく暗黙的な発話(例えば「有機ミルク」)を使う傾向があり、多くの候補製品に繋がる。
一方、同じ質問に対して、異なる顧客は異なる結果を期待するかもしれない。
例えば、"add milk to my cart"では、顧客は特定の有機製品を参照し、一部の顧客は定期的に購入した製品を再注文したい場合があります。
これらの課題に対処するため、製品ランキングの精度を向上させるためにパーソナライズされた機能を活用する新しいフレームワークを提案する。
まず、顧客の購入履歴と製品知識グラフから、クロスソースな異種知識グラフを構築し、顧客と製品の埋め込みを共同で学習する。
その後、プロダクト、顧客、履歴の表現をニューラルリランキングモデルに組み込んで、どの候補が特定の顧客に購入される可能性が最も高いかを予測します。
実験の結果,本モデルは,最先端製品検索モデルと比較して,上位候補の精度を24.6%向上させることがわかった。
関連論文リスト
- Product Ranking for Revenue Maximization with Multiple Purchases [29.15026863056805]
オンライン小売業者が消費者の行動を正確にモデル化できる場合に最適なランキングポリシーを提案する。
We developed the Multiple-Purchase-with-Budget UCB algorithm with $O(sqrtT)$ regret。
合成データセットと半合成データセットの両方の実験により、提案アルゴリズムの有効性が証明された。
論文 参考訳(メタデータ) (2022-10-15T11:59:45Z) - Visually Similar Products Retrieval for Shopsy [0.0]
マルチタスク学習手法を用いて,リセラーコマースのためのビジュアル検索システムを設計する。
我々のモデルは属性分類、三重項ランク付け、変分オートエンコーダ(VAE)の3つの異なるタスクからなる。
論文 参考訳(メタデータ) (2022-10-10T10:59:18Z) - OA-Mine: Open-World Attribute Mining for E-Commerce Products with Weak
Supervision [93.26737878221073]
オープンワールド環境における属性マイニングの問題点を考察し,新しい属性とその値の抽出を行う。
本稿では、まず属性値候補を生成し、次にそれらを属性のクラスタにグループ化する、原則化されたフレームワークを提案する。
我々のモデルは強いベースラインをはるかに上回り、目に見えない属性や製品タイプに一般化することができる。
論文 参考訳(メタデータ) (2022-04-29T04:16:04Z) - Towards Personalized Answer Generation in E-Commerce via
Multi-Perspective Preference Modeling [62.049330405736406]
Eコマースプラットフォーム上での製品質問回答(PQA)は、インテリジェントオンラインショッピングアシスタントとして機能するため、注目を集めている。
なぜなら、多くの顧客は、自分でのみカスタマイズされた情報でパーソナライズされた回答を見たいと思っているからです。
PQAにおけるパーソナライズされた回答を生成するための,新しいマルチパースペクティブなユーザ嗜好モデルを提案する。
論文 参考訳(メタデータ) (2021-12-27T07:51:49Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
本研究は,小売分析と統計学習のアイデアを疎結合に組み合わせ,買い物客のオンラインギフトストアへの買い物嗜好を学習する方法を報告する。
論文 参考訳(メタデータ) (2021-11-11T05:36:39Z) - Aggregated Customer Engagement Model [0.571097144710995]
Eコマースウェブサイトは、機械学習によるランキングモデルを使用して、顧客に対してショッピング結果を提供する。
新規または過小評価された製品は、十分な顧客エンゲージメント信号を持っておらず、人気製品に並ぶと不利になる。
本稿では,1日以内にすべての顧客エンゲージメントを集約し,同じクエリを入力トレーニングデータとして使用する新しいデータキュレーション手法を提案する。
論文 参考訳(メタデータ) (2021-08-17T20:58:10Z) - User-Inspired Posterior Network for Recommendation Reason Generation [53.035224183349385]
推奨理由生成は、顧客の関心を惹きつけ、ユーザーエクスペリエンスを向上させる上で重要な役割を果たします。
ユーザインスパイアされたマルチソース後部トランス(MSPT)を提案し,ユーザの興味を反映したモデルを誘導する。
実験の結果,本モデルは従来の生成モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-02-16T02:08:52Z) - E-commerce Query-based Generation based on User Review [1.484852576248587]
本稿では,従来のユーザによるレビューに基づいて,ユーザの質問に対する回答を生成するための新しいセク2seqベースのテキスト生成モデルを提案する。
ユーザの質問や感情の極性が与えられた場合,関心事の側面を抽出し,過去のユーザレビューを要約した回答を生成する。
論文 参考訳(メタデータ) (2020-11-11T04:58:31Z) - Exploiting Knowledge Graphs for Facilitating Product/Service Discovery [1.2691047660244332]
本研究は,データ分類に教師なしアプローチを採用することにより,データWeb上でのeコマースのための費用対効果のソリューションを提案する。
提案アーキテクチャでは,Web言語OWLで利用可能な製品について記述し,それをトリプルストアに格納する。
特定の製品のユーザ入力仕様は、利用可能な製品カテゴリと一致し、知識グラフを生成する。
論文 参考訳(メタデータ) (2020-10-11T10:22:10Z) - Automatic Validation of Textual Attribute Values in E-commerce Catalog
by Learning with Limited Labeled Data [61.789797281676606]
そこで我々はMetaBridgeと呼ばれる新しいメタ学習潜伏変数アプローチを提案する。
限られたラベル付きデータを持つカテゴリのサブセットから、転送可能な知識を学ぶことができる。
ラベルのないデータで、目に見えないカテゴリの不確実性を捉えることができる。
論文 参考訳(メタデータ) (2020-06-15T21:31:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。