Personalized Entity Resolution with Dynamic Heterogeneous Knowledge
Graph Representations
- URL: http://arxiv.org/abs/2104.02667v1
- Date: Tue, 6 Apr 2021 16:58:27 GMT
- Title: Personalized Entity Resolution with Dynamic Heterogeneous Knowledge
Graph Representations
- Authors: Ying Lin, Han Wang, Jiangning Chen, Tong Wang, Yue Liu, Heng Ji, Yang
Liu, Premkumar Natarajan
- Abstract summary: We propose a new framework that leverages personalized features to improve the accuracy of product ranking.
We first build a cross-source heterogeneous knowledge graph from customer purchase history and product knowledge graph to jointly learn customer and product embeddings.
After that, we incorporate product, customer, and history representations into a neural reranking model to predict which candidate is most likely to be purchased for a specific customer.
- Score: 40.37976161857134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing popularity of Virtual Assistants poses new challenges for Entity
Resolution, the task of linking mentions in text to their referent entities in
a knowledge base. Specifically, in the shopping domain, customers tend to use
implicit utterances (e.g., "organic milk") rather than explicit names, leading
to a large number of candidate products. Meanwhile, for the same query,
different customers may expect different results. For example, with "add milk
to my cart", a customer may refer to a certain organic product, while some
customers may want to re-order products they regularly purchase. To address
these issues, we propose a new framework that leverages personalized features
to improve the accuracy of product ranking. We first build a cross-source
heterogeneous knowledge graph from customer purchase history and product
knowledge graph to jointly learn customer and product embeddings. After that,
we incorporate product, customer, and history representations into a neural
reranking model to predict which candidate is most likely to be purchased for a
specific customer. Experiments show that our model substantially improves the
accuracy of the top ranked candidates by 24.6% compared to the state-of-the-art
product search model.
Related papers
- Product Ranking for Revenue Maximization with Multiple Purchases [29.15026863056805]
We propose an optimal ranking policy when the online retailer can precisely model consumers' behaviors.
We develop the Multiple-Purchase-with-Budget UCB algorithms with $O(sqrtT)$ regret.
Experiments on both synthetic and semi-synthetic datasets prove the effectiveness of the proposed algorithms.
arXiv Detail & Related papers (2022-10-15T11:59:45Z) - Visually Similar Products Retrieval for Shopsy [0.0]
We design a visual search system for reseller commerce using a multi-task learning approach.
Our model consists of three different tasks: attribute classification, triplet ranking and variational autoencoder (VAE)
arXiv Detail & Related papers (2022-10-10T10:59:18Z) - OA-Mine: Open-World Attribute Mining for E-Commerce Products with Weak
Supervision [93.26737878221073]
We study the attribute mining problem in an open-world setting to extract novel attributes and their values.
We propose a principled framework that first generates attribute value candidates and then groups them into clusters of attributes.
Our model significantly outperforms strong baselines and can generalize to unseen attributes and product types.
arXiv Detail & Related papers (2022-04-29T04:16:04Z) - Towards Personalized Answer Generation in E-Commerce via
Multi-Perspective Preference Modeling [62.049330405736406]
Product Question Answering (PQA) on E-Commerce platforms has attracted increasing attention as it can act as an intelligent online shopping assistant.
It is insufficient to provide the same "completely summarized" answer to all customers, since many customers are more willing to see personalized answers with customized information only for themselves.
We propose a novel multi-perspective user preference model for generating personalized answers in PQA.
arXiv Detail & Related papers (2021-12-27T07:51:49Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
This work reports a method to learn the shopping preferences of frequent shoppers to an online gift store by combining ideas from retail analytics and statistical learning with sparsity.
arXiv Detail & Related papers (2021-11-11T05:36:39Z) - Aggregated Customer Engagement Model [0.571097144710995]
E-commerce websites use machine learned ranking models to serve shopping results to customers.
New or under-impressed products do not have enough customer engagement signals and end up at a disadvantage when being ranked alongside popular products.
We propose a novel method for data curation that aggregates all customer engagements within a day for the same query to use as input training data.
arXiv Detail & Related papers (2021-08-17T20:58:10Z) - User-Inspired Posterior Network for Recommendation Reason Generation [53.035224183349385]
Recommendation reason generation plays a vital role in attracting customers' attention as well as improving user experience.
We propose a user-inspired multi-source posterior transformer (MSPT), which induces the model reflecting the users' interests.
Experimental results show that our model is superior to traditional generative models.
arXiv Detail & Related papers (2021-02-16T02:08:52Z) - E-commerce Query-based Generation based on User Review [1.484852576248587]
We propose a novel seq2seq based text generation model to generate answers to user's question based on reviews posted by previous users.
Given a user question and/or target sentiment polarity, we extract aspects of interest and generate an answer that summarizes previous relevant user reviews.
arXiv Detail & Related papers (2020-11-11T04:58:31Z) - Exploiting Knowledge Graphs for Facilitating Product/Service Discovery [1.2691047660244332]
This work presents a cost-effective solution for e-commerce on the Data Web by employing an unsupervised approach for data classification.
The proposed architecture describes available products in web language OWL and stores them in a triple store.
User input specifications for certain products are matched against the available product categories to generate a knowledge graph.
arXiv Detail & Related papers (2020-10-11T10:22:10Z) - Automatic Validation of Textual Attribute Values in E-commerce Catalog
by Learning with Limited Labeled Data [61.789797281676606]
We propose a novel meta-learning latent variable approach, called MetaBridge.
It can learn transferable knowledge from a subset of categories with limited labeled data.
It can capture the uncertainty of never-seen categories with unlabeled data.
arXiv Detail & Related papers (2020-06-15T21:31:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.