論文の概要: Better Neural Machine Translation by Extracting Linguistic Information
from BERT
- arxiv url: http://arxiv.org/abs/2104.02831v1
- Date: Wed, 7 Apr 2021 00:03:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-09 01:56:48.807499
- Title: Better Neural Machine Translation by Extracting Linguistic Information
from BERT
- Title(参考訳): BERTからの言語情報抽出によるより優れたニューラルネットワーク翻訳
- Authors: Hassan S. Shavarani and Anoop Sarkar
- Abstract要約: ニューラルマシン翻訳(NMT)に言語情報を追加することは、主に事前訓練されたモデルからの点推定の使用に焦点を当てている。
我々は点推定の代わりにBERTから細調整ベクターベース言語情報を抽出することによりNMTを増強する。
- 参考スコア(独自算出の注目度): 4.353029347463806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adding linguistic information (syntax or semantics) to neural machine
translation (NMT) has mostly focused on using point estimates from pre-trained
models. Directly using the capacity of massive pre-trained contextual word
embedding models such as BERT (Devlin et al., 2019) has been marginally useful
in NMT because effective fine-tuning is difficult to obtain for NMT without
making training brittle and unreliable. We augment NMT by extracting dense
fine-tuned vector-based linguistic information from BERT instead of using point
estimates. Experimental results show that our method of incorporating
linguistic information helps NMT to generalize better in a variety of training
contexts and is no more difficult to train than conventional Transformer-based
NMT.
- Abstract(参考訳): ニューラルマシン翻訳(NMT)に言語情報(構文や意味論)を加えることは、主に事前訓練されたモデルからの点推定の使用に焦点を当てている。
BERT(Devlin et al., 2019)のような大量の事前学習された文脈単語埋め込みモデルの能力を直接利用することは、トレーニングの脆さと信頼性を損なうことなく、NMTに効果的な微調整を得ることが困難であるため、NMTにおいて極めて有用である。
我々は点推定の代わりにBERTから細調整ベクターベース言語情報を抽出することによりNMTを増強する。
実験の結果, 言語情報を取り込む手法は, nmtの一般化に寄与し, 従来のトランスフォーマー型nmtよりも訓練が困難であることがわかった。
関連論文リスト
- Code-Switching with Word Senses for Pretraining in Neural Machine
Translation [107.23743153715799]
ニューラルネットワーク翻訳のための単語センス事前学習(WSP-NMT)について紹介する。
WSP-NMTは、知識ベースからの単語感覚情報を活用した多言語NMTモデルの事前学習のためのエンドツーエンドアプローチである。
実験の結果,全体の翻訳品質が大幅に向上した。
論文 参考訳(メタデータ) (2023-10-21T16:13:01Z) - Better Datastore, Better Translation: Generating Datastores from
Pre-Trained Models for Nearest Neural Machine Translation [48.58899349349702]
Nearest Neighbor Machine Translation (kNNMT)は、トークンレベルの近接した近接検索機構を備えた、ニューラルネットワーク翻訳(NMT)の簡易かつ効果的な方法である。
本稿では,kNN-MTにおけるデータストアの事前学習モデルを活用するフレームワークであるPreDを提案する。
論文 参考訳(メタデータ) (2022-12-17T08:34:20Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
CsaNMT(Continuous Semantic Augmentation)と呼ばれる新しいデータ拡張パラダイムを提案する。
CsaNMTは各トレーニングインスタンスを、同じ意味の下で適切なリテラル式をカバーできる隣接領域で拡張する。
論文 参考訳(メタデータ) (2022-04-14T08:16:28Z) - Language Modeling, Lexical Translation, Reordering: The Training Process
of NMT through the Lens of Classical SMT [64.1841519527504]
ニューラルマシン翻訳は、翻訳プロセス全体をモデル化するために、単一のニューラルネットワークを使用する。
ニューラルネットワーク翻訳はデファクトスタンダードであるにもかかわらず、NMTモデルがトレーニングの過程でどのように異なる能力を獲得するのかは、まだ明らかになっていない。
論文 参考訳(メタデータ) (2021-09-03T09:38:50Z) - Exploring Unsupervised Pretraining Objectives for Machine Translation [99.5441395624651]
教師なし言語間事前訓練は、ニューラルマシン翻訳(NMT)の強力な結果を得た
ほとんどのアプローチは、入力の一部をマスキングしてデコーダで再構成することで、シーケンス・ツー・シーケンスアーキテクチャにマスク付き言語モデリング(MLM)を適用する。
マスキングと、実際の(完全な)文に似た入力を生成する代替目的を、文脈に基づいて単語を並べ替えて置き換えることにより比較する。
論文 参考訳(メタデータ) (2021-06-10T10:18:23Z) - PheMT: A Phenomenon-wise Dataset for Machine Translation Robustness on
User-Generated Contents [40.25277134147149]
日本語翻訳における特定の言語現象に対するMTシステムの堅牢性を評価するための新しいデータセットであるPheMTを提案する。
作成したデータセットを用いて行った実験では、社内モデルだけでなく、市販のシステムでも、特定の現象の存在によって大きく混乱していることが明らかになりました。
論文 参考訳(メタデータ) (2020-11-04T04:44:47Z) - Assessing the Bilingual Knowledge Learned by Neural Machine Translation
Models [72.56058378313963]
NMTモデルで学習したバイリンガル知識をフレーズテーブルで評価することで,このギャップを埋める。
NMTモデルは、単純なものから複雑なものまでパターンを学習し、トレーニング例から本質的なバイリンガル知識を抽出する。
論文 参考訳(メタデータ) (2020-04-28T03:44:34Z) - Incorporating BERT into Neural Machine Translation [251.54280200353674]
本稿では,入力シーケンスの表現抽出にBERTを用いたBERT融合モデルを提案する。
我々は、教師付き(文レベルと文書レベルの翻訳を含む)、半教師なしおよび教師なしの機械翻訳の実験を行い、7つのベンチマークデータセットで最先端の結果を得る。
論文 参考訳(メタデータ) (2020-02-17T08:13:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。