論文の概要: Deep Interpretable Models of Theory of Mind For Human-Agent Teaming
- arxiv url: http://arxiv.org/abs/2104.02938v1
- Date: Wed, 7 Apr 2021 06:18:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-08 22:07:21.674310
- Title: Deep Interpretable Models of Theory of Mind For Human-Agent Teaming
- Title(参考訳): 人間-エージェントチームにおける心の理論の深い解釈可能なモデル
- Authors: Ini Oguntola, Dana Hughes, Katia Sycara
- Abstract要約: 我々は、他の観測対象の意図をモデル化するための解釈可能なモジュラー・ニューラル・フレームワークを開発する。
Minecraftの検索および救助タスクで、人間の参加者のデータに関する実験を行い、アプローチの有効性を実証します。
- 参考スコア(独自算出の注目度): 0.7734726150561086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When developing AI systems that interact with humans, it is essential to
design both a system that can understand humans, and a system that humans can
understand. Most deep network based agent-modeling approaches are 1) not
interpretable and 2) only model external behavior, ignoring internal mental
states, which potentially limits their capability for assistance,
interventions, discovering false beliefs, etc. To this end, we develop an
interpretable modular neural framework for modeling the intentions of other
observed entities. We demonstrate the efficacy of our approach with experiments
on data from human participants on a search and rescue task in Minecraft, and
show that incorporating interpretability can significantly increase predictive
performance under the right conditions.
- Abstract(参考訳): 人間と対話するAIシステムを開発する際には、人間を理解することのできるシステムと、人間が理解できるシステムの両方を設計することが不可欠である。
最も深いネットワークベースのエージェントモデリングアプローチは、1)解釈可能ではなく、2)外部の行動のみをモデル化し、内部の精神状態を無視し、援助、介入、誤った信念の発見などの能力を制限する。
この目的のために、他の観測対象の意図をモデル化するための解釈可能なモジュラーニューラルネットワークフレームワークを開発する。
本研究では,マインクラフトにおける探索救助作業における人的参加者のデータを用いた実験により,本手法の有効性を実証し,適切な条件下での予測性能を著しく向上させることを示す。
関連論文リスト
- Approximating Human Models During Argumentation-based Dialogues [4.178382980763478]
説明可能なAI計画(XAIP)の主な課題は、モデルの和解である。
本稿では,AIエージェントによる確率的人間モデル学習と更新を可能にする新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-28T23:22:18Z) - Human Uncertainty in Concept-Based AI Systems [37.82747673914624]
概念に基づくAIシステムのコンテキストにおける人間の不確実性について検討する。
不確実な概念ラベルによるトレーニングは、概念ベースシステムにおける弱点を軽減するのに役立つ可能性がある。
論文 参考訳(メタデータ) (2023-03-22T19:17:57Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Machine Explanations and Human Understanding [31.047297225560566]
説明は、機械学習モデルの人間の理解を改善すると仮定される。
実験的な研究で 混ざった結果も 否定的な結果も出ています
人間の直観が人間の理解にどのような役割を果たしているかを示す。
論文 参考訳(メタデータ) (2022-02-08T19:00:38Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Human-Understandable Decision Making for Visual Recognition [30.30163407674527]
モデル学習プロセスに人間の知覚の優先順位を組み込むことにより,深層ニューラルネットワークを訓練する新たなフレームワークを提案する。
提案モデルの有効性を2つの古典的視覚認識タスクで評価する。
論文 参考訳(メタデータ) (2021-03-05T02:07:33Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。