Few-Shot Incremental Learning with Continually Evolved Classifiers
- URL: http://arxiv.org/abs/2104.03047v1
- Date: Wed, 7 Apr 2021 10:54:51 GMT
- Title: Few-Shot Incremental Learning with Continually Evolved Classifiers
- Authors: Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan, Yinghui Xu
- Abstract summary: Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
- Score: 46.278573301326276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot class-incremental learning (FSCIL) aims to design machine learning
algorithms that can continually learn new concepts from a few data points,
without forgetting knowledge of old classes. The difficulty lies in that
limited data from new classes not only lead to significant overfitting issues
but also exacerbate the notorious catastrophic forgetting problems. Moreover,
as training data come in sequence in FSCIL, the learned classifier can only
provide discriminative information in individual sessions, while FSCIL requires
all classes to be involved for evaluation. In this paper, we address the FSCIL
problem from two aspects. First, we adopt a simple but effective decoupled
learning strategy of representations and classifiers that only the classifiers
are updated in each incremental session, which avoids knowledge forgetting in
the representations. By doing so, we demonstrate that a pre-trained backbone
plus a non-parametric class mean classifier can beat state-of-the-art methods.
Second, to make the classifiers learned on individual sessions applicable to
all classes, we propose a Continually Evolved Classifier (CEC) that employs a
graph model to propagate context information between classifiers for
adaptation. To enable the learning of CEC, we design a pseudo incremental
learning paradigm that episodically constructs a pseudo incremental learning
task to optimize the graph parameters by sampling data from the base dataset.
Experiments on three popular benchmark datasets, including CIFAR100,
miniImageNet, and Caltech-USCD Birds-200-2011 (CUB200), show that our method
significantly outperforms the baselines and sets new state-of-the-art results
with remarkable advantages.
Related papers
- Knowledge Adaptation Network for Few-Shot Class-Incremental Learning [23.90555521006653]
Few-shot class-incremental learning aims to incrementally recognize new classes using a few samples.
One of the effective methods to solve this challenge is to construct prototypical evolution classifiers.
Because representations for new classes are weak and biased, we argue such a strategy is suboptimal.
arXiv Detail & Related papers (2024-09-18T07:51:38Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
We propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF)
To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach.
When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt.
arXiv Detail & Related papers (2024-01-03T07:59:17Z) - Constructing Sample-to-Class Graph for Few-Shot Class-Incremental
Learning [10.111587226277647]
Few-shot class-incremental learning (FSCIL) aims to build machine learning model that can continually learn new concepts from a few data samples.
In this paper, we propose a Sample-to-Class (S2C) graph learning method for FSCIL.
arXiv Detail & Related papers (2023-10-31T08:38:14Z) - Class Incremental Learning with Self-Supervised Pre-Training and
Prototype Learning [21.901331484173944]
We analyze the causes of catastrophic forgetting in class incremental learning.
We propose a two-stage learning framework with a fixed encoder and an incrementally updated prototype classifier.
Our method does not rely on preserved samples of old classes, is thus a non-exemplar based CIL method.
arXiv Detail & Related papers (2023-08-04T14:20:42Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.