Constructing Sample-to-Class Graph for Few-Shot Class-Incremental
Learning
- URL: http://arxiv.org/abs/2310.20268v1
- Date: Tue, 31 Oct 2023 08:38:14 GMT
- Title: Constructing Sample-to-Class Graph for Few-Shot Class-Incremental
Learning
- Authors: Fuyuan Hu, Jian Zhang, Fan Lyu, Linyan Li, Fenglei Xu
- Abstract summary: Few-shot class-incremental learning (FSCIL) aims to build machine learning model that can continually learn new concepts from a few data samples.
In this paper, we propose a Sample-to-Class (S2C) graph learning method for FSCIL.
- Score: 10.111587226277647
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Few-shot class-incremental learning (FSCIL) aims to build machine learning
model that can continually learn new concepts from a few data samples, without
forgetting knowledge of old classes.
The challenges of FSCIL lies in the limited data of new classes, which not
only lead to significant overfitting issues but also exacerbates the notorious
catastrophic forgetting problems. As proved in early studies, building sample
relationships is beneficial for learning from few-shot samples. In this paper,
we promote the idea to the incremental scenario, and propose a Sample-to-Class
(S2C) graph learning method for FSCIL.
Specifically, we propose a Sample-level Graph Network (SGN) that focuses on
analyzing sample relationships within a single session. This network helps
aggregate similar samples, ultimately leading to the extraction of more refined
class-level features.
Then, we present a Class-level Graph Network (CGN) that establishes
connections across class-level features of both new and old classes. This
network plays a crucial role in linking the knowledge between different
sessions and helps improve overall learning in the FSCIL scenario. Moreover, we
design a multi-stage strategy for training S2C model, which mitigates the
training challenges posed by limited data in the incremental process.
The multi-stage training strategy is designed to build S2C graph from base to
few-shot stages, and improve the capacity via an extra pseudo-incremental
stage. Experiments on three popular benchmark datasets show that our method
clearly outperforms the baselines and sets new state-of-the-art results in
FSCIL.
Related papers
- Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
We propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF)
To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach.
When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt.
arXiv Detail & Related papers (2024-01-03T07:59:17Z) - Two-level Graph Network for Few-Shot Class-Incremental Learning [7.815043173207539]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
Existing FSCIL methods ignore the semantic relationships between sample-level and class-level.
In this paper, we designed a two-level graph network for FSCIL named Sample-level and Class-level Graph Neural Network (SCGN)
arXiv Detail & Related papers (2023-03-24T08:58:08Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes)
We explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes.
Our proposed method is robust and generalizes to all analyzed CIL settings.
arXiv Detail & Related papers (2022-04-07T17:58:07Z) - Graph Few-shot Class-incremental Learning [25.94168397283495]
The ability to incrementally learn new classes is vital to all real-world artificial intelligence systems.
In this paper, we investigate the challenging yet practical problem, Graph Few-shot Class-incremental (Graph FCL) problem.
We put forward a Graph Pseudo Incremental Learning paradigm by sampling tasks recurrently from the base classes.
We present a task-sensitive regularizer calculated from task-level attention and node class prototypes to mitigate overfitting onto either novel or base classes.
arXiv Detail & Related papers (2021-12-23T19:46:07Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
We propose a novel contrastive prototype learning with augmented embeddings (CPLAE) model.
With a class prototype as an anchor, CPL aims to pull the query samples of the same class closer and those of different classes further away.
Extensive experiments on several benchmarks demonstrate that our proposed CPLAE achieves new state-of-the-art.
arXiv Detail & Related papers (2021-01-23T13:22:44Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Few-Shot Class-Incremental Learning [68.75462849428196]
We focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem.
FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones.
We represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes.
arXiv Detail & Related papers (2020-04-23T03:38:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.