論文の概要: TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
Encryption
- arxiv url: http://arxiv.org/abs/2104.03152v1
- Date: Wed, 7 Apr 2021 14:32:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-08 16:26:10.789232
- Title: TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
Encryption
- Title(参考訳): TenSEAL: 同型暗号化を用いたテンソル操作の暗号化ライブラリ
- Authors: Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, Alaa Eddine Belfedhal
- Abstract要約: モノモルフィック暗号化を用いたプライバシー保護機械学習のためのオープンソースライブラリTenSEALを紹介します。
我々は,半メガバイト以下の通信を用いて,暗号化畳み込みニューラルネットワークを1秒以内で評価可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning algorithms have achieved remarkable results and are widely
applied in a variety of domains. These algorithms often rely on sensitive and
private data such as medical and financial records. Therefore, it is vital to
draw further attention regarding privacy threats and corresponding defensive
techniques applied to machine learning models. In this paper, we present
TenSEAL, an open-source library for Privacy-Preserving Machine Learning using
Homomorphic Encryption that can be easily integrated within popular machine
learning frameworks. We benchmark our implementation using MNIST and show that
an encrypted convolutional neural network can be evaluated in less than a
second, using less than half a megabyte of communication.
- Abstract(参考訳): 機械学習アルゴリズムは目覚ましい成果を上げ、様々な分野に広く応用されている。
これらのアルゴリズムは、医療記録や財務記録などの機密データやプライベートデータに依存することが多い。
したがって、プライバシの脅威や、マシンラーニングモデルに適用される防御技術について、さらに注意を払うことが不可欠である。
本稿では,一般的な機械学習フレームワークに容易に統合可能な準同型暗号を用いた,プライバシ保存型機械学習のためのオープンソースライブラリであるtensealを提案する。
我々は、MNISTを用いて実装をベンチマークし、半メガバイト以下の通信を用いて、暗号化畳み込みニューラルネットワークを1秒未満で評価可能であることを示す。
関連論文リスト
- MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
言語モデル(LM)は、プライベートおよび著作権のあるコンテンツを含む大量のテキストデータに基づいて訓練される。
総合的な機械学習評価ベンチマークであるMUSEを提案する。
人気のある8つのアンラーニングアルゴリズムがハリー・ポッターの本やニュース記事をいかに効果的に解き放つかをベンチマークする。
論文 参考訳(メタデータ) (2024-07-08T23:47:29Z) - Learning in the Dark: Privacy-Preserving Machine Learning using Function Approximation [1.8907108368038215]
Learning in the Darkは、暗号化された画像を高精度に分類できる、プライバシ保護機械学習モデルである。
暗号化データ上で直接計算を行うことで、高精度な予測を行うことができる。
論文 参考訳(メタデータ) (2023-09-15T06:45:58Z) - Robust Representation Learning for Privacy-Preserving Machine Learning:
A Multi-Objective Autoencoder Approach [0.9831489366502302]
プライバシー保護機械学習(ppML)のための堅牢な表現学習フレームワークを提案する。
提案手法は,多目的方式でオートエンコーダを訓練することを中心に,符号化部からの潜伏と学習の特徴を符号化形式として結合する。
提案したフレームワークでは、元のフォームを公開せずに、データを共有し、サードパーティツールを使用することができます。
論文 参考訳(メタデータ) (2023-09-08T16:41:25Z) - Homomorphic Encryption and Federated Learning based Privacy-Preserving
CNN Training: COVID-19 Detection Use-Case [0.41998444721319217]
本稿では、同相暗号を用いた医療データのためのプライバシー保護フェデレーション学習アルゴリズムを提案する。
提案アルゴリズムはセキュアなマルチパーティ計算プロトコルを用いて,ディープラーニングモデルを敵から保護する。
論文 参考訳(メタデータ) (2022-04-16T08:38:35Z) - SoK: Privacy-preserving Deep Learning with Homomorphic Encryption [2.9069679115858755]
ホモモルフィック暗号化(HE)は、その内容を明らかにすることなく暗号化データ上で実行される。
プライバシ保護のために、ニューラルネットワークとHEを組み合わせたアプローチを詳細に検討します。
計算オーバーヘッドやユーザビリティ,暗号化スキームによる制限といった,HEベースのプライバシ保護の深層学習には,数多くの課題がある。
論文 参考訳(メタデータ) (2021-12-23T22:03:27Z) - MORSE-STF: A Privacy Preserving Computation System [12.875477499515158]
MPCに基づくプライバシー保護機械学習フレームワークSecure-TFを提案する。
我々のフレームワークは、ロジスティック回帰、完全接続型ニューラルネットワーク、畳み込み型ニューラルネットワークなど、広く使われている機械学習モデルをサポートすることができる。
論文 参考訳(メタデータ) (2021-09-24T03:42:46Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
本稿では,DQNエージェントが,離散的かつ連続的な状態空間を持つ環境でどのように動作するかを予備的,実験的に検討する。
その結果,非決定論的暗号が存在する場合でも,エージェントは依然として小さな状態空間で学習することができるが,より複雑な環境では性能が低下することがわかった。
論文 参考訳(メタデータ) (2021-09-16T21:59:37Z) - NeuraCrypt: Hiding Private Health Data via Random Neural Networks for
Public Training [64.54200987493573]
我々は,ランダムな深層ニューラルネットワークに基づくプライベート符号化方式であるNeuraCryptを提案する。
NeuraCryptは、データ所有者のみが知っているランダムに構築されたニューラルネットワークを使用して、生の患者データをエンコードする。
我々は,NeuraCryptが,様々なX線タスクの非プライベートベースラインに対して,競合精度を達成することを示す。
論文 参考訳(メタデータ) (2021-06-04T13:42:21Z) - A Graph Federated Architecture with Privacy Preserving Learning [48.24121036612076]
フェデレーション学習は、複数のエージェントと連携してグローバルモデルを見つける中央プロセッサを含む。
複数のクライアントに接続されたサーバの現在のアーキテクチャは、サーバの通信障害や計算過負荷に非常に敏感です。
暗号と差分プライバシーの概念を使用して、グラフ構造に拡張するフェデレーション学習アルゴリズムを民営化します。
論文 参考訳(メタデータ) (2021-04-26T09:51:24Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。