TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
Encryption
- URL: http://arxiv.org/abs/2104.03152v1
- Date: Wed, 7 Apr 2021 14:32:38 GMT
- Title: TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
Encryption
- Authors: Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, Alaa Eddine Belfedhal
- Abstract summary: We present TenSEAL, an open-source library for Privacy-Preserving Machine Learning using Homomorphic Encryption.
We show that an encrypted convolutional neural network can be evaluated in less than a second, using less than half a megabyte of communication.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning algorithms have achieved remarkable results and are widely
applied in a variety of domains. These algorithms often rely on sensitive and
private data such as medical and financial records. Therefore, it is vital to
draw further attention regarding privacy threats and corresponding defensive
techniques applied to machine learning models. In this paper, we present
TenSEAL, an open-source library for Privacy-Preserving Machine Learning using
Homomorphic Encryption that can be easily integrated within popular machine
learning frameworks. We benchmark our implementation using MNIST and show that
an encrypted convolutional neural network can be evaluated in less than a
second, using less than half a megabyte of communication.
Related papers
- Federated Learning with Quantum Computing and Fully Homomorphic Encryption: A Novel Computing Paradigm Shift in Privacy-Preserving ML [4.92218040320554]
Federated Learning is a privacy-preserving alternative to conventional methods that allow multiple learning clients to share model knowledge without disclosing private data.
This work applies the Fully Homomorphic Encryption scheme to a Federated Learning Neural Network architecture that integrates both classical and quantum layers.
arXiv Detail & Related papers (2024-09-14T01:23:26Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
Language models (LMs) are trained on vast amounts of text data, which may include private and copyrighted content.
We propose MUSE, a comprehensive machine unlearning evaluation benchmark.
We benchmark how effectively eight popular unlearning algorithms can unlearn Harry Potter books and news articles.
arXiv Detail & Related papers (2024-07-08T23:47:29Z) - Learning in the Dark: Privacy-Preserving Machine Learning using Function Approximation [1.8907108368038215]
Learning in the Dark is a privacy-preserving machine learning model that can classify encrypted images with high accuracy.
It is capable of performing high accuracy predictions by performing computations directly on encrypted data.
arXiv Detail & Related papers (2023-09-15T06:45:58Z) - Homomorphic Encryption and Federated Learning based Privacy-Preserving
CNN Training: COVID-19 Detection Use-Case [0.41998444721319217]
This paper proposes a privacy-preserving federated learning algorithm for medical data using homomorphic encryption.
The proposed algorithm uses a secure multi-party computation protocol to protect the deep learning model from the adversaries.
arXiv Detail & Related papers (2022-04-16T08:38:35Z) - SoK: Privacy-preserving Deep Learning with Homomorphic Encryption [2.9069679115858755]
homomorphic encryption (HE) can be performed on encrypted data without revealing its content.
We take an in-depth look at approaches that combine neural networks with HE for privacy preservation.
We find numerous challenges to HE based privacy-preserving deep learning such as computational overhead, usability, and limitations posed by the encryption schemes.
arXiv Detail & Related papers (2021-12-23T22:03:27Z) - MORSE-STF: A Privacy Preserving Computation System [12.875477499515158]
We present Secure-TF, a privacy-preserving machine learning framework based on MPC.
Our framework is able to support widely-used machine learning models such as logistic regression, fully-connected neural network, and convolutional neural network.
arXiv Detail & Related papers (2021-09-24T03:42:46Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - NeuraCrypt: Hiding Private Health Data via Random Neural Networks for
Public Training [64.54200987493573]
We propose NeuraCrypt, a private encoding scheme based on random deep neural networks.
NeuraCrypt encodes raw patient data using a randomly constructed neural network known only to the data-owner.
We show that NeuraCrypt achieves competitive accuracy to non-private baselines on a variety of x-ray tasks.
arXiv Detail & Related papers (2021-06-04T13:42:21Z) - A Graph Federated Architecture with Privacy Preserving Learning [48.24121036612076]
Federated learning involves a central processor that works with multiple agents to find a global model.
The current architecture of a server connected to multiple clients is highly sensitive to communication failures and computational overloads at the server.
We use cryptographic and differential privacy concepts to privatize the federated learning algorithm that we extend to the graph structure.
arXiv Detail & Related papers (2021-04-26T09:51:24Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.