Cryptanalysis via Machine Learning Based Information Theoretic Metrics
- URL: http://arxiv.org/abs/2501.15076v1
- Date: Sat, 25 Jan 2025 04:53:36 GMT
- Title: Cryptanalysis via Machine Learning Based Information Theoretic Metrics
- Authors: Benjamin D. Kim, Vipindev Adat Vasudevan, Rafael G. L. D'Oliveira, Alejandro Cohen, Thomas Stahlbuhk, Muriel Médard,
- Abstract summary: We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
- Score: 58.96805474751668
- License:
- Abstract: The fields of machine learning (ML) and cryptanalysis share an interestingly common objective of creating a function, based on a given set of inputs and outputs. However, the approaches and methods in doing so vary vastly between the two fields. In this paper, we explore integrating the knowledge from the ML domain to provide empirical evaluations of cryptosystems. Particularly, we utilize information theoretic metrics to perform ML-based distribution estimation. We propose two novel applications of ML algorithms that can be applied in a known plaintext setting to perform cryptanalysis on any cryptosystem. We use mutual information neural estimation to calculate a cryptosystem's mutual information leakage, and a binary cross entropy classification to model an indistinguishability under chosen plaintext attack (CPA). These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem and the results can provide a useful empirical bound. We evaluate the efficacy of our methodologies by empirically analyzing several encryption schemes. Furthermore, we extend the analysis to novel network coding-based cryptosystems and provide other use cases for our algorithms. We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy. It also identifies the faults in CPA-secure cryptosystems with faulty parameters, such a reduced counter version of AES-CTR. We also conclude that with our algorithms, in most cases a smaller-sized neural network using less computing power can identify vulnerabilities in cryptosystems, providing a quick check of the sanity of the cryptosystem and help to decide whether to spend more resources to deploy larger networks that are able to break the cryptosystem.
Related papers
- Encrypted system identification as-a-service via reliable encrypted matrix inversion [0.0]
Encrypted computation opens up promising avenues across a plethora of application domains.
In particular, Arithmetic homomorphic encryption is a natural fit for cloud-based computational services.
This paper presents an encrypted system identification service enabled by a reliable encrypted solution to at least squares problems.
arXiv Detail & Related papers (2024-10-27T20:00:04Z) - Lightweight Cryptanalysis of IoT Encryption Algorithms : Is Quota Sampling the Answer? [0.0]
Two well-known lightweight algorithms are SIMON and SIMECK which have been specifically designed for use on resource-constrained IoT devices.
It is necessary to test these algorithms for resilience against differential cryptanalysis attacks.
In this paper, we introduce Versatile Investigative Sampling Technique for Advanced Cryptanalysis.
arXiv Detail & Related papers (2024-04-12T00:08:39Z) - FoC: Figure out the Cryptographic Functions in Stripped Binaries with LLMs [54.27040631527217]
We propose a novel framework called FoC to Figure out the Cryptographic functions in stripped binaries.
We first build a binary large language model (FoC-BinLLM) to summarize the semantics of cryptographic functions in natural language.
We then build a binary code similarity model (FoC-Sim) upon the FoC-BinLLM to create change-sensitive representations and use it to retrieve similar implementations of unknown cryptographic functions in a database.
arXiv Detail & Related papers (2024-03-27T09:45:33Z) - Cryptanalysis and improvement of multimodal data encryption by
machine-learning-based system [0.0]
encryption algorithms to accommodate varied requirements of this field.
Best approach to analyzing an encryption algorithm is to identify a practical and efficient technique to break it.
arXiv Detail & Related papers (2024-02-24T10:02:21Z) - Decrypting Nonlinearity: Koopman Interpretation and Analysis of Cryptosystems [0.05120567378386613]
We introduce a novel perspective on cryptosystems by viewing the Diffie-Hellman key exchange and the Rivest-Shamir-Adleman cryptosystem as nonlinear dynamical systems.
By applying Koopman theory, we transform these dynamical systems into higher-dimensional spaces and analytically derive equivalent purely linear systems.
arXiv Detail & Related papers (2023-11-21T16:38:48Z) - CRYPTO-MINE: Cryptanalysis via Mutual Information Neural Estimation [42.481750913003204]
Mutual Information (MI) is a measure to evaluate the efficiency of cryptosystems.
Recent advances in machine learning have enabled progress in estimating MI using neural networks.
This work presents a novel application of MI estimation in the field of cryptography.
arXiv Detail & Related papers (2023-09-14T20:30:04Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
We formulate meta learning using information theoretic concepts; namely, mutual information and the information bottleneck.
By making use of variational approximations to the mutual information, we derive a general and tractable framework for meta learning.
arXiv Detail & Related papers (2020-09-07T16:47:30Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.