論文の概要: Deep Features for training Support Vector Machine
- arxiv url: http://arxiv.org/abs/2104.03488v1
- Date: Thu, 8 Apr 2021 03:13:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 00:28:37.907688
- Title: Deep Features for training Support Vector Machine
- Title(参考訳): 訓練支援ベクターマシンの深い特徴
- Authors: Loris Nanni, Stefano Ghidoni, Sheryl Brahnam
- Abstract要約: 本稿では,訓練済みcnnから抽出した特徴に基づく汎用コンピュータビジョンシステムを開発した。
複数の学習特徴を単一の構造に組み合わせ、異なる画像分類タスクに取り組んでいます。
- 参考スコア(独自算出の注目度): 16.795405355504077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Features play a crucial role in computer vision. Initially designed to detect
salient elements by means of handcrafted algorithms, features are now often
learned by different layers in Convolutional Neural Networks (CNNs). This paper
develops a generic computer vision system based on features extracted from
trained CNNs. Multiple learned features are combined into a single structure to
work on different image classification tasks. The proposed system was
experimentally derived by testing several approaches for extracting features
from the inner layers of CNNs and using them as inputs to SVMs that are then
combined by sum rule. Dimensionality reduction techniques are used to reduce
the high dimensionality of inner layers. The resulting vision system is shown
to significantly boost the performance of standard CNNs across a large and
diverse collection of image data sets. An ensemble of different topologies
using the same approach obtains state-of-the-art results on a virus data set.
- Abstract(参考訳): 特徴はコンピュータビジョンにおいて重要な役割を果たす。
当初は手作りのアルゴリズムで有能な要素を検出するように設計されていたが、現在では畳み込みニューラルネットワーク(CNN)の異なる層でしばしば学習されている。
本稿では,訓練済みcnnから抽出した特徴に基づく汎用コンピュータビジョンシステムを開発した。
複数の学習された機能は単一の構造に結合され、異なる画像分類タスクに取り組む。
提案システムは,CNNの内部層から特徴を抽出し,それらを和規則で結合したSVMへの入力として利用する手法を実験的に検討した。
次元低減技術は、内部層の高次元化に使用される。
得られた視覚システムは、画像データセットの多種多様なコレクションにわたって標準CNNの性能を大幅に向上させる。
同じアプローチを用いた異なるトポロジのアンサンブルは、ウイルスデータセットの最先端の結果を得る。
関連論文リスト
- Which Backbone to Use: A Resource-efficient Domain Specific Comparison for Computer Vision [4.600687314645625]
ImageNetのような大規模なデータセットで事前トレーニングされたアーキテクチャバックボーンは、一般的に機能抽出器として使用される。
本研究は、一貫したトレーニング設定下で、複数の軽量で事前訓練されたCNNバックボーンを体系的に評価する。
本研究は,異なるバックボーンの性能トレードオフと有効性について,実用的な知見を提供する。
論文 参考訳(メタデータ) (2024-06-09T02:01:25Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
コントラスト学習とマルチスケールグラフ畳み込みネットワーク(IcicleGCN)を用いた画像クラスタリング手法を提案する。
複数の画像データセットの実験は、最先端のIcicleGCNよりも優れたクラスタリング性能を示している。
論文 参考訳(メタデータ) (2022-07-14T19:16:56Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
本稿では,畳み込み型アーキテクチャサーチ(VTCAS)を用いたアーキテクチャ探索手法を提案する。
VTCASによって探索された高性能バックボーンネットワークは、畳み込みニューラルネットワークの望ましい特徴をトランスフォーマーアーキテクチャに導入する。
これは、特に低照度屋内シーンにおいて、物体認識のためのニューラルネットワークの堅牢性を高める。
論文 参考訳(メタデータ) (2022-03-20T02:59:51Z) - Network Comparison Study of Deep Activation Feature Discriminability
with Novel Objects [0.5076419064097732]
最先端のコンピュータビジョンアルゴリズムは、Deep Neural Networks(DNN)を特徴抽出に取り入れ、Deep Convolutional Activation Features(DeCAF)を作成する。
本研究では、6つの主要な視覚認識DNNアーキテクチャのDeCAF空間に符号化された新しい物体の視覚的外観の一般的な識別可能性について分析する。
論文 参考訳(メタデータ) (2022-02-08T07:40:53Z) - Deep ensembles in bioimage segmentation [74.01883650587321]
本研究では,畳み込みニューラルネットワーク(CNN)のアンサンブルを提案する。
アンサンブル法では、多くの異なるモデルが訓練され、分類に使用され、アンサンブルは単一分類器の出力を集約する。
提案するアンサンブルは,DeepLabV3+とHarDNet環境を用いて,異なるバックボーンネットワークを組み合わせることで実現されている。
論文 参考訳(メタデータ) (2021-12-24T05:54:21Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Combining pretrained CNN feature extractors to enhance clustering of
complex natural images [27.784346095205358]
本稿では,画像クラスタリング(IC)における事前学習CNN機能の利用に関する知見を提供することを目的とする。
そこで本研究では,IC問題をマルチビュークラスタリング(MVC)問題として再構成することを提案する。
次に、MVC問題を効果的に解くためにエンドツーエンドに訓練されたマルチインプットニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-01-07T21:23:04Z) - Convolutional Neural Networks for Multispectral Image Cloud Masking [7.812073412066698]
畳み込みニューラルネットワーク(CNN)は多くの画像分類タスクの最先端技術であることが証明されている。
Proba-Vマルチスペクトル画像のクラウドマスキングにおける異なるCNNアーキテクチャの利用について検討する。
論文 参考訳(メタデータ) (2020-12-09T21:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。