Digital Epidemiology: A review
- URL: http://arxiv.org/abs/2104.03611v2
- Date: Thu, 4 Aug 2022 16:30:07 GMT
- Title: Digital Epidemiology: A review
- Authors: David Pastor-Escuredo
- Abstract summary: The epidemiology has recently witnessed great advances based on computational models.
Big Data along with apps are enabling for validating and refining models with real world data at scale.
Ebolas have to be approached from the lens of complexity as they require systemic solutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The epidemiology has recently witnessed great advances based on computational
models. Its scope and impact are getting wider thanks to the new data sources
feeding analytical frameworks and models. Besides traditional variables
considered in epidemiology, large-scale social patterns can be now integrated
in real time with multi-source data bridging the gap between different scales.
In a hyper-connected world, models and analysis of interactions and social
behaviors are key to understand and stop outbreaks. Big Data along with apps
are enabling for validating and refining models with real world data at scale,
as well as new applications and frameworks to map and track diseases in real
time or optimize the necessary resources and interventions such as testing and
vaccination strategies. Digital epidemiology is positioning as a discipline
necessary to control epidemics and implement actionable protocols and policies.
In this review we address the research areas configuring current digital
epidemiology: transmission and propagation models and descriptions based on
human networks and contact tracing, mobility analysis and spatio-temporal
propagation of infectious diseases and infodemics that comprises the study of
information and knowledge propagation. Digital epidemiology has the potential
to create new operational mechanisms for prevention and mitigation, monitoring
of the evolution of epidemics, assessing their impact and evaluating the
pharmaceutical and non-pharmaceutical measures to fight the outbreaks.
Epidemics have to be approached from the lens of complexity as they require
systemic solutions. Opportunities and challenges to tackle epidemics more
effectively and with a human-centered vision are here discussed.
Related papers
- Epidemiology-informed Graph Neural Network for Heterogeneity-aware Epidemic Forecasting [46.63739322178277]
Recent studies have demonstrated the strong potential of of-temporal neural networks (STGNNs) in extracting heterogeneous-temporal epidemic patterns.
HeatGNN learns epidemiology-informed locations embedding different locations that reflect their own transmission mechanisms over time.
HeatGNN outperforms various strong baselines of HeatHeat on different sizes of Heat.
arXiv Detail & Related papers (2024-11-26T12:29:45Z) - Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph [14.28921518883576]
We introduce an innovative end-to-end framework called Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph (EARTH)
We first propose EANO, which seamlessly integrates the neural ODE approach with the epidemic mechanism.
We also introduce GLTG to model global infection trends and leverage these signals to guide local transmission dynamically.
arXiv Detail & Related papers (2024-09-28T04:07:16Z) - A Short Survey of Human Mobility Prediction in Epidemic Modeling from Transformers to LLMs [0.0]
Understanding how people move during epidemics is essential for modeling the spread of diseases.
Forecasting population movement is crucial for informing models and facilitating effective response planning in public health emergencies.
We review a range of approaches utilizing both pretrained language models like BERT and Large Language Models (LLMs) tailored specifically for mobility prediction tasks.
arXiv Detail & Related papers (2024-04-25T17:52:19Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - An Extended Epidemic Model on Interconnected Networks for COVID-19 to
Explore the Epidemic Dynamics [2.89591830279936]
The pandemic control necessitates epidemic models that capture the trends and impacts on infectious individuals.
Many exciting models can implement this but they lack practical interpretability.
This study combines the epidemiological and network theories and proposes a framework with causal interpretability.
arXiv Detail & Related papers (2021-04-10T06:46:01Z) - STOPPAGE: Spatio-temporal Data Driven Cloud-Fog-Edge Computing Framework
for Pandemic Monitoring and Management [28.205715426050105]
It is absolutely necessary to develop an analytics framework to deliver insights in improving administrative policy and enhance the preparedness to combat the pandemic.
This paper proposes a STOP-temporal knowledge mining framework, named STOP to model the impact of human mobility and contextual information over large geographic area in different temporal scales.
The framework has two modules: (i) S-temporal data and computing infrastructure using fog/edge based architecture; and (ii) S-temporal data analytics module to efficiently extract knowledge from heterogeneous data sources.
arXiv Detail & Related papers (2021-04-04T12:29:31Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
We develop Bayesian inference methods to estimate the risk that an individual is infected.
We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic.
Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact.
arXiv Detail & Related papers (2020-09-20T12:24:45Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization.
We present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence to tackle many aspects of the COVID-19 crisis.
arXiv Detail & Related papers (2020-03-25T12:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.