Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph
- URL: http://arxiv.org/abs/2410.00049v2
- Date: Sun, 10 Nov 2024 05:26:44 GMT
- Title: Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph
- Authors: Guancheng Wan, Zewen Liu, Max S. Y. Lau, B. Aditya Prakash, Wei Jin,
- Abstract summary: We introduce an innovative end-to-end framework called Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph (EARTH)
We first propose EANO, which seamlessly integrates the neural ODE approach with the epidemic mechanism.
We also introduce GLTG to model global infection trends and leverage these signals to guide local transmission dynamically.
- Score: 14.28921518883576
- License:
- Abstract: Effective epidemic forecasting is critical for public health strategies and efficient medical resource allocation, especially in the face of rapidly spreading infectious diseases. However, existing deep-learning methods often overlook the dynamic nature of epidemics and fail to account for the specific mechanisms of disease transmission. In response to these challenges, we introduce an innovative end-to-end framework called Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph (EARTH) in this paper. To learn continuous and regional disease transmission patterns, we first propose EANO, which seamlessly integrates the neural ODE approach with the epidemic mechanism, considering the complex spatial spread process during epidemic evolution. Additionally, we introduce GLTG to model global infection trends and leverage these signals to guide local transmission dynamically. To accommodate both the global coherence of epidemic trends and the local nuances of epidemic transmission patterns, we build a cross-attention approach to fuse the most meaningful information for forecasting. Through the smooth synergy of both components, EARTH offers a more robust and flexible approach to understanding and predicting the spread of infectious diseases. Extensive experiments show EARTH superior performance in forecasting real-world epidemics compared to state-of-the-art methods. The code will be available at https://github.com/Emory-Melody/EpiLearn.
Related papers
- Epidemiology-informed Graph Neural Network for Heterogeneity-aware Epidemic Forecasting [46.63739322178277]
Recent studies have demonstrated the strong potential of of-temporal neural networks (STGNNs) in extracting heterogeneous-temporal epidemic patterns.
HeatGNN learns epidemiology-informed locations embedding different locations that reflect their own transmission mechanisms over time.
HeatGNN outperforms various strong baselines of HeatHeat on different sizes of Heat.
arXiv Detail & Related papers (2024-11-26T12:29:45Z) - EpiGNN: Exploring Spatial Transmission with Graph Neural Network for
Regional Epidemic Forecasting [16.543085296174496]
EpiGNN is a graph neural network-based model for epidemic forecasting.
We develop a Region-Aware Graph (RAGL) that takes transmission risk, geographical dependencies, and temporal information into account.
We show that EpiGNN outperforms state-of-the-art baselines by 9.48% in RMSE.
arXiv Detail & Related papers (2022-08-23T14:29:04Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Epicasting: An Ensemble Wavelet Neural Network (EWNet) for Forecasting
Epidemics [2.705025060422369]
Infectious diseases remain among the top contributors to human illness and death worldwide.
Forecasts of epidemics can assist stakeholders in tailoring countermeasures to the situation at hand.
arXiv Detail & Related papers (2022-06-21T19:31:25Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Digital Epidemiology: A review [0.0]
The epidemiology has recently witnessed great advances based on computational models.
Big Data along with apps are enabling for validating and refining models with real world data at scale.
Ebolas have to be approached from the lens of complexity as they require systemic solutions.
arXiv Detail & Related papers (2021-04-08T08:45:20Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
arXiv Detail & Related papers (2020-09-23T22:35:43Z) - Transfer Graph Neural Networks for Pandemic Forecasting [32.0506180195988]
We study the impact of population movement on the spread of COVID-19.
We employ graph neural networks to predict the number of future cases.
arXiv Detail & Related papers (2020-09-10T13:23:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.