CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep
Representation Learning from Sporadic Temporal Data
- URL: http://arxiv.org/abs/2104.03739v1
- Date: Thu, 8 Apr 2021 12:43:44 GMT
- Title: CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep
Representation Learning from Sporadic Temporal Data
- Authors: Mostafa Mehdipour Ghazi, Lauge S{\o}rensen, S\'ebastien Ourselin, Mads
Nielsen
- Abstract summary: In this paper, a novel deep learning-based model is developed for modeling multiple temporal features in sporadic data.
The proposed model, called CARRNN, uses a generalized discrete-time autoregressive model that is trainable end-to-end using neural networks modulated by time lags.
It is applied to multivariate time-series regression tasks using data provided for Alzheimer's disease progression modeling and intensive care unit (ICU) mortality rate prediction.
- Score: 1.8352113484137622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning temporal patterns from multivariate longitudinal data is challenging
especially in cases when data is sporadic, as often seen in, e.g., healthcare
applications where the data can suffer from irregularity and asynchronicity as
the time between consecutive data points can vary across features and samples,
hindering the application of existing deep learning models that are constructed
for complete, evenly spaced data with fixed sequence lengths. In this paper, a
novel deep learning-based model is developed for modeling multiple temporal
features in sporadic data using an integrated deep learning architecture based
on a recurrent neural network (RNN) unit and a continuous-time autoregressive
(CAR) model. The proposed model, called CARRNN, uses a generalized
discrete-time autoregressive model that is trainable end-to-end using neural
networks modulated by time lags to describe the changes caused by the
irregularity and asynchronicity. It is applied to multivariate time-series
regression tasks using data provided for Alzheimer's disease progression
modeling and intensive care unit (ICU) mortality rate prediction, where the
proposed model based on a gated recurrent unit (GRU) achieves the lowest
prediction errors among the proposed RNN-based models and state-of-the-art
methods using GRUs and long short-term memory (LSTM) networks in their
architecture.
Related papers
- Reduced-order modeling of unsteady fluid flow using neural network ensembles [0.0]
We propose using bagging, a commonly used ensemble learning technique, to develop a fully data-driven reduced-order model framework.
The framework uses CAEs for spatial reconstruction of the full-order model and LSTM ensembles for time-series prediction.
Results show that the presented framework effectively reduces error propagation and leads to more accurate time-series prediction of latent variables at unseen points.
arXiv Detail & Related papers (2024-02-08T03:02:59Z) - Delayed Memory Unit: Modelling Temporal Dependency Through Delay Gate [16.4160685571157]
Recurrent Neural Networks (RNNs) are widely recognized for their proficiency in modeling temporal dependencies.
This paper proposes a novel Delayed Memory Unit (DMU) for gated RNNs.
The DMU incorporates a delay line structure along with delay gates into vanilla RNN, thereby enhancing temporal interaction and facilitating temporal credit assignment.
arXiv Detail & Related papers (2023-10-23T14:29:48Z) - Neural Differential Recurrent Neural Network with Adaptive Time Steps [11.999568208578799]
We propose an RNN-based model, called RNN-ODE-Adap, that uses a neural ODE to represent the time development of the hidden states.
We adaptively select time steps based on the steepness of changes of the data over time so as to train the model more efficiently for the "spike-like" time series.
arXiv Detail & Related papers (2023-06-02T16:46:47Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
We present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN)
CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding.
We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.
arXiv Detail & Related papers (2023-04-10T16:18:37Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Gated Recurrent Neural Networks with Weighted Time-Delay Feedback [59.125047512495456]
We introduce a novel gated recurrent unit (GRU) with a weighted time-delay feedback mechanism.
We show that $tau$-GRU can converge faster and generalize better than state-of-the-art recurrent units and gated recurrent architectures.
arXiv Detail & Related papers (2022-12-01T02:26:34Z) - A data filling methodology for time series based on CNN and (Bi)LSTM
neural networks [0.0]
We develop two Deep Learning models aimed at filling data gaps in time series obtained from monitored apartments in Bolzano, Italy.
Our approach manages to capture the fluctuating nature of the data and shows good accuracy in reconstructing the target time series.
arXiv Detail & Related papers (2022-04-21T09:40:30Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.