論文の概要: 3D Surfel Map-Aided Visual Relocalization with Learned Descriptors
- arxiv url: http://arxiv.org/abs/2104.03856v1
- Date: Thu, 8 Apr 2021 15:59:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-09 16:23:57.409010
- Title: 3D Surfel Map-Aided Visual Relocalization with Learned Descriptors
- Title(参考訳): 学習記述子を用いた3次元サーフェルマップ支援ビジュアルリローカライゼーション
- Authors: Haoyang Ye, Huaiyang Huang, Marco Hutter, Timothy Sandy, Ming Liu
- Abstract要約: 本稿では3次元サーベイルマップから幾何情報を用いた視覚的再局在化手法を提案する。
ビジュアルデータベースは、まず3dサーフェルマップレンダリングのグローバルインデックスによって構築され、画像ポイントと3dサーフェルの関連を提供する。
階層型カメラ再ローカライズアルゴリズムは、視覚データベースを用いて6-DoFカメラのポーズを推定する。
- 参考スコア(独自算出の注目度): 15.608529165143718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a method for visual relocalization using the
geometric information from a 3D surfel map. A visual database is first built by
global indices from the 3D surfel map rendering, which provides associations
between image points and 3D surfels. Surfel reprojection constraints are
utilized to optimize the keyframe poses and map points in the visual database.
A hierarchical camera relocalization algorithm then utilizes the visual
database to estimate 6-DoF camera poses. Learned descriptors are further used
to improve the performance in challenging cases. We present evaluation under
real-world conditions and simulation to show the effectiveness and efficiency
of our method, and make the final camera poses consistently well aligned with
the 3D environment.
- Abstract(参考訳): 本稿では,3次元サーベイルマップからの幾何情報を用いた視覚的再局在化手法を提案する。
視覚データベースは3Dサーベイルマップレンダリングのグローバルインデックスによって構築され、画像ポイントと3Dサーベイルの関連性を提供する。
サーフェル再投影制約は、ビジュアルデータベースのキーフレームポーズとマップポイントを最適化するために利用される。
階層型カメラ再ローカライズアルゴリズムは、視覚データベースを用いて6-DoFカメラのポーズを推定する。
学習済みのディスクリプタは、難しいケースのパフォーマンス向上にさらに使用される。
本手法の有効性と効率を示すために,実世界環境下での評価とシミュレーションを行い,最終カメラのポーズを3次元環境と一貫して一致させる。
関連論文リスト
- Visual Localization in 3D Maps: Comparing Point Cloud, Mesh, and NeRF Representations [8.522160106746478]
様々な3次元地図表現にまたがる単一カメラ画像のローカライズが可能なグローバルな視覚的ローカライゼーションシステムを提案する。
本システムは,シーンの新たなビューを合成し,RGBと深度画像のペアを作成することでデータベースを生成する。
NeRF合成画像は、クエリ画像を平均72%の成功率でローカライズし、優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-21T19:37:17Z) - 3DGS-ReLoc: 3D Gaussian Splatting for Map Representation and Visual ReLocalization [13.868258945395326]
本稿では,3次元ガウススプラッティングを用いた3次元マッピングと視覚的再局在のための新しいシステムを提案する。
提案手法は、LiDARとカメラデータを用いて、環境の正確な視覚的表現を生成する。
論文 参考訳(メタデータ) (2024-03-17T23:06:12Z) - Neural Voting Field for Camera-Space 3D Hand Pose Estimation [106.34750803910714]
3次元暗黙表現に基づく1枚のRGB画像からカメラ空間の3Dハンドポーズ推定のための統一的なフレームワークを提案する。
本稿では,カメラフラストラムにおける高密度3次元ポイントワイド投票により,カメラ空間の3次元ハンドポーズを推定する,新しい3次元高密度回帰手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T16:51:34Z) - Tracking by 3D Model Estimation of Unknown Objects in Videos [122.56499878291916]
この表現は限定的であり、代わりに明示的なオブジェクト表現を用いて2次元追跡をガイドし改善することを提案する。
我々の表現は、全てのビデオフレームのオブジェクト上の全ての3Dポイント間の複雑な長期密度対応問題に取り組む。
提案手法は, 最適3次元形状, テクスチャ, 6DoFのポーズを推定するために, 新たな損失関数を最小化する。
論文 参考訳(メタデータ) (2023-04-13T11:32:36Z) - CAPE: Camera View Position Embedding for Multi-View 3D Object Detection [100.02565745233247]
現在のクエリベースの手法は、画像と3次元空間の幾何学的対応を学習するために、グローバルな3D位置埋め込みに依存している。
本稿では,CAPE と呼ばれる,CAmera view position Embedding に基づく新しい手法を提案する。
CAPEはnuScenesデータセット上の全てのLiDARフリーメソッドの中で最先端のパフォーマンス(61.0% NDSと52.5% mAP)を達成する。
論文 参考訳(メタデータ) (2023-03-17T18:59:54Z) - Neural Correspondence Field for Object Pose Estimation [67.96767010122633]
1枚のRGB画像から3次元モデルで剛体物体の6DoFポーズを推定する手法を提案する。
入力画像の画素で3次元オブジェクト座標を予測する古典的対応法とは異なり,提案手法はカメラフラストラムでサンプリングされた3次元クエリポイントで3次元オブジェクト座標を予測する。
論文 参考訳(メタデータ) (2022-07-30T01:48:23Z) - Improved Modeling of 3D Shapes with Multi-view Depth Maps [48.8309897766904]
CNNを用いて3次元形状をモデル化するための汎用フレームワークを提案する。
オブジェクトの1つの深度画像だけで、3Dオブジェクトの高密度な多視点深度マップ表現を出力できる。
論文 参考訳(メタデータ) (2020-09-07T17:58:27Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。