論文の概要: Conditional Meta-Network for Blind Super-Resolution with Multiple
Degradations
- arxiv url: http://arxiv.org/abs/2104.03926v1
- Date: Thu, 8 Apr 2021 17:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-09 13:02:48.751247
- Title: Conditional Meta-Network for Blind Super-Resolution with Multiple
Degradations
- Title(参考訳): 複数の劣化を伴うブラインド超解法のための条件付きメタネットワーク
- Authors: Guanghao Yin, Wei Wang, Zehuan Yuan, Shouqian Sun, Changhu Wang
- Abstract要約: 単一画像スーパーリゾリューション(SISR)メソッドは、実際のシナリオで複数のデグレード効果でパフォーマンス低下を被る。
条件付きメタネットワークフレームワーク(CMDSRと命名)を初めて提案し、SRフレームワークが入力分布の変化に適応する方法を学ぶのに役立つ。
- 参考スコア(独自算出の注目度): 22.866755277868098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although single-image super-resolution (SISR) methods have achieved great
success on single degradation, they still suffer performance drop with multiple
degrading effects in real scenarios. Recently, some blind and non-blind models
for multiple degradations have been explored. However, those methods usually
degrade significantly for distribution shifts between the training and test
data. Towards this end, we propose a conditional meta-network framework (named
CMDSR) for the first time, which helps SR framework learn how to adapt to
changes in input distribution. We extract degradation prior at task-level with
the proposed ConditionNet, which will be used to adapt the parameters of the
basic SR network (BaseNet). Specifically, the ConditionNet of our framework
first learns the degradation prior from a support set, which is composed of a
series of degraded image patches from the same task. Then the adaptive BaseNet
rapidly shifts its parameters according to the conditional features. Moreover,
in order to better extract degradation prior, we propose a task contrastive
loss to decrease the inner-task distance and increase the cross-task distance
between task-level features. Without predefining degradation maps, our blind
framework can conduct one single parameter update to yield considerable SR
results. Extensive experiments demonstrate the effectiveness of CMDSR over
various blind, even non-blind methods. The flexible BaseNet structure also
reveals that CMDSR can be a general framework for large series of SISR models.
- Abstract(参考訳): 単一画像の超解像法(SISR)は単一劣化において大きな成功を収めているが、実際のシナリオでは複数の劣化効果で性能低下を被っている。
近年,複数の劣化に対する盲目および非盲目モデルが検討されている。
しかし、これらの手法は通常、トレーニングデータとテストデータの間の分散シフトに対して著しく劣化する。
この目的に向けて,SRフレームワークが入力分布の変化に適応する方法を学ぶのに役立つ条件付きメタネットワークフレームワーク(CMDSR)を初めて提案する。
本稿では,基本SRネットワーク(BaseNet)のパラメータの適応に使用する条件ネットを用いて,タスクレベルでの劣化を抽出する。
具体的には、我々のフレームワークのConditionNetは、最初に、同じタスクから一連の劣化したイメージパッチで構成されたサポートセットから劣化を学習する。
そして、適応的なBaseNetは条件の特徴に応じてパラメータを素早くシフトします。
さらに, 劣化を早期に抽出するために, 内部タスク間距離を減少させ, タスクレベルの機能間のタスク間距離を増加させるタスクコントラスト損失を提案する。
劣化マップを事前に定義しなければ、我々のブラインドフレームワークは1つのパラメータを更新して、かなりのSR結果を得ることができる。
広範囲にわたる実験は、様々な盲目、さらには盲目の方法に対するCMDSRの有効性を示す。
柔軟なBaseNet構造は、CMDSRが大規模なSISRモデルの一般的なフレームワークであることを明らかにする。
関連論文リスト
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Efficient and Degradation-Adaptive Network for Real-World Image
Super-Resolution [28.00231586840797]
実世界の画像超解像(Real-ISR)は、実世界の画像の未知の複雑な劣化のために難しい課題である。
近年のReal-ISRの研究は、画像劣化空間をモデル化することによって大きな進歩を遂げている。
本稿では,各入力画像の劣化を推定してパラメータを適応的に指定する,効率的な劣化適応型超解像ネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-27T05:59:13Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
畳み込みニューラルネットワーク(CNN)の設計の最近の進歩は、画像超解像(SR)の性能を大幅に向上させた。
残差ブロック内の一連の密接な接続を含む単位上に構築されたスケールリカレントSRアーキテクチャを提案する(Residual Dense Blocks (RDBs))。
我々のスケールリカレント設計は、現在の最先端のアプローチに比べてパラメトリックに効率的でありながら、より高いスケール要因の競合性能を提供する。
論文 参考訳(メタデータ) (2022-01-28T09:18:43Z) - Learning Deep Context-Sensitive Decomposition for Low-Light Image
Enhancement [58.72667941107544]
典型的なフレームワークは、照明と反射を同時に推定することであるが、特徴空間にカプセル化されたシーンレベルの文脈情報を無視する。
本研究では,空間スケールにおけるシーンレベルのコンテキスト依存を生かした,コンテキスト依存型分解ネットワークアーキテクチャを提案する。
チャネル数を減らして軽量なCSDNet(LiteCSDNet)を開発する。
論文 参考訳(メタデータ) (2021-12-09T06:25:30Z) - Style Normalization and Restitution for DomainGeneralization and
Adaptation [88.86865069583149]
効果的なドメイン一般化モデルは、一般化および判別可能な特徴表現を学習することが期待される。
本稿では,ネットワークの高一般化と識別能力を確保するために,新しいスタイル正規化・再構成モジュール(SNR)を設計する。
論文 参考訳(メタデータ) (2021-01-03T09:01:39Z) - OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling
Network [3.6683231417848283]
SISRを任意のスケールで1つのモデルで解くための,深層でも軽量な畳み込みネットワークであるOverNetを紹介した。
我々のネットワークは、従来の手法よりも少ないパラメータを使用しながら、標準ベンチマークにおいて、過去の最先端結果よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-05T22:10:29Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。