CropGym: a Reinforcement Learning Environment for Crop Management
- URL: http://arxiv.org/abs/2104.04326v1
- Date: Fri, 9 Apr 2021 12:17:26 GMT
- Title: CropGym: a Reinforcement Learning Environment for Crop Management
- Authors: Hiske Overweg, Herman N.C. Berghuijs, Ioannis N. Athanasiadis
- Abstract summary: We implement an OpenAI Gym environment where a reinforcement learning agent can learn fertilization management policies.
In our environment, an agent trained with the Proximal Policy Optimization algorithm is more successful at reducing environmental impacts than the other baseline agents.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nitrogen fertilizers have a detrimental effect on the environment, which can
be reduced by optimizing fertilizer management strategies. We implement an
OpenAI Gym environment where a reinforcement learning agent can learn
fertilization management policies using process-based crop growth models and
identify policies with reduced environmental impact. In our environment, an
agent trained with the Proximal Policy Optimization algorithm is more
successful at reducing environmental impacts than the other baseline agents we
present.
Related papers
- A Comparative Study of Deep Reinforcement Learning for Crop Production Management [13.123171643387668]
Reinforcement learning (RL) has emerged as a promising tool for developing adaptive crop management policies.
In the gym-DSSAT crop model environment, one of the most widely used simulators for crop management, proximal policy optimization (PPO) and deep Q-networks (DQN) have shown promising results.
In this study, we evaluated PPO and DQN against static baseline policies across three different RL tasks, fertilization, irrigation, and mixed management, provided by the gym-DSSAT environment.
arXiv Detail & Related papers (2024-11-06T18:35:51Z) - AgGym: An agricultural biotic stress simulation environment for ultra-precision management planning [8.205412609306713]
We present AgGym, a modular, crop and stress simulation framework to model the spread of biotic stresses in a field.
We show that AgGym can be customized with limited data to simulate yield outcomes under various biotic stress conditions.
Our proposed framework enables personalized decision support that can transform biotic stress management from being schedule based to opportunistic and prescriptive.
arXiv Detail & Related papers (2024-09-01T14:55:45Z) - Learning-based agricultural management in partially observable
environments subject to climate variability [5.5062239803516615]
Agricultural management holds a central role in shaping crop yield, economic profitability, and environmental sustainability.
We introduce an innovative framework that integrates Deep Reinforcement Learning (DRL) with Recurrent Neural Networks (RNNs)
Our study illuminates the need for agent retraining to acquire new optimal policies under extreme weather events.
arXiv Detail & Related papers (2024-01-02T16:18:53Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Diverse Policy Optimization for Structured Action Space [59.361076277997704]
We propose Diverse Policy Optimization (DPO) to model the policies in structured action space as the energy-based models (EBM)
A novel and powerful generative model, GFlowNet, is introduced as the efficient, diverse EBM-based policy sampler.
Experiments on ATSC and Battle benchmarks demonstrate that DPO can efficiently discover surprisingly diverse policies.
arXiv Detail & Related papers (2023-02-23T10:48:09Z) - Stateful active facilitator: Coordination and Environmental
Heterogeneity in Cooperative Multi-Agent Reinforcement Learning [71.53769213321202]
We formalize the notions of coordination level and heterogeneity level of an environment.
We present HECOGrid, a suite of multi-agent environments that facilitates empirical evaluation of different MARL approaches.
We propose a Training Decentralized Execution learning approach that enables agents to work efficiently in high-coordination and high-heterogeneity environments.
arXiv Detail & Related papers (2022-10-04T18:17:01Z) - Optimizing Crop Management with Reinforcement Learning and Imitation
Learning [9.69704937572711]
We present an intelligent crop management system which optimize the N fertilization and irrigation simultaneously via reinforcement learning (RL), imitation learning (IL), and crop simulations.
We conduct experiments on a case study using maize in Florida and compare trained policies with a maize management guideline in simulations.
Our trained policies under both full and partial observations achieve better outcomes, resulting in a higher profit or a similar profit with a smaller environmental impact.
arXiv Detail & Related papers (2022-09-20T20:48:52Z) - Optimizing Nitrogen Management with Deep Reinforcement Learning and Crop
Simulations [11.576438685465797]
Nitrogen (N) management is critical to sustain soil fertility and crop production while minimizing the negative environmental impact, but is challenging to optimize.
This paper proposes an intelligent N management system using deep reinforcement learning (RL) and crop simulations with Decision Support System for Agrotechnology Transfer (DSSAT)
We then train management policies with deep Q-network and soft actor-critic algorithms, and the Gym-DSSAT interface that allows for daily interactions between the simulated crop environment and RL agents.
arXiv Detail & Related papers (2022-04-21T20:26:41Z) - Emergent Complexity and Zero-shot Transfer via Unsupervised Environment
Design [121.73425076217471]
We propose Unsupervised Environment Design (UED), where developers provide environments with unknown parameters, and these parameters are used to automatically produce a distribution over valid, solvable environments.
We call our technique Protagonist Antagonist Induced Regret Environment Design (PAIRED)
Our experiments demonstrate that PAIRED produces a natural curriculum of increasingly complex environments, and PAIRED agents achieve higher zero-shot transfer performance when tested in highly novel environments.
arXiv Detail & Related papers (2020-12-03T17:37:01Z) - Environment Shaping in Reinforcement Learning using State Abstraction [63.444831173608605]
We propose a novel framework of emphenvironment shaping using state abstraction.
Our key idea is to compress the environment's large state space with noisy signals to an abstracted space.
We show that the agent's policy learnt in the shaped environment preserves near-optimal behavior in the original environment.
arXiv Detail & Related papers (2020-06-23T17:00:22Z) - Ecological Reinforcement Learning [76.9893572776141]
We study the kinds of environment properties that can make learning under such conditions easier.
understanding how properties of the environment impact the performance of reinforcement learning agents can help us to structure our tasks in ways that make learning tractable.
arXiv Detail & Related papers (2020-06-22T17:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.