Optimizing Nitrogen Management with Deep Reinforcement Learning and Crop
Simulations
- URL: http://arxiv.org/abs/2204.10394v1
- Date: Thu, 21 Apr 2022 20:26:41 GMT
- Title: Optimizing Nitrogen Management with Deep Reinforcement Learning and Crop
Simulations
- Authors: Jing Wu, Ran Tao, Pan Zhao, Nicolas F. Martin, Naira Hovakimyan
- Abstract summary: Nitrogen (N) management is critical to sustain soil fertility and crop production while minimizing the negative environmental impact, but is challenging to optimize.
This paper proposes an intelligent N management system using deep reinforcement learning (RL) and crop simulations with Decision Support System for Agrotechnology Transfer (DSSAT)
We then train management policies with deep Q-network and soft actor-critic algorithms, and the Gym-DSSAT interface that allows for daily interactions between the simulated crop environment and RL agents.
- Score: 11.576438685465797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nitrogen (N) management is critical to sustain soil fertility and crop
production while minimizing the negative environmental impact, but is
challenging to optimize. This paper proposes an intelligent N management system
using deep reinforcement learning (RL) and crop simulations with Decision
Support System for Agrotechnology Transfer (DSSAT). We first formulate the N
management problem as an RL problem. We then train management policies with
deep Q-network and soft actor-critic algorithms, and the Gym-DSSAT interface
that allows for daily interactions between the simulated crop environment and
RL agents. According to the experiments on the maize crop in both Iowa and
Florida in the US, our RL-trained policies outperform previous empirical
methods by achieving higher or similar yield while using less fertilizers
Related papers
- A Comparative Study of Deep Reinforcement Learning for Crop Production Management [13.123171643387668]
Reinforcement learning (RL) has emerged as a promising tool for developing adaptive crop management policies.
In the gym-DSSAT crop model environment, one of the most widely used simulators for crop management, proximal policy optimization (PPO) and deep Q-networks (DQN) have shown promising results.
In this study, we evaluated PPO and DQN against static baseline policies across three different RL tasks, fertilization, irrigation, and mixed management, provided by the gym-DSSAT environment.
arXiv Detail & Related papers (2024-11-06T18:35:51Z) - AgGym: An agricultural biotic stress simulation environment for ultra-precision management planning [8.205412609306713]
We present AgGym, a modular, crop and stress simulation framework to model the spread of biotic stresses in a field.
We show that AgGym can be customized with limited data to simulate yield outcomes under various biotic stress conditions.
Our proposed framework enables personalized decision support that can transform biotic stress management from being schedule based to opportunistic and prescriptive.
arXiv Detail & Related papers (2024-09-01T14:55:45Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - The New Agronomists: Language Models are Experts in Crop Management [11.239822736512929]
This paper introduces a more advanced intelligent crop management system.
We utilize deep RL, specifically a deep Q-network, to train management policies that process numerous state variables from the simulator as observations.
A novel aspect of our approach is the conversion of these state variables into more informative language, facilitating the language model's capacity to understand states and explore optimal management practices.
arXiv Detail & Related papers (2024-03-28T21:20:27Z) - Compressing Deep Reinforcement Learning Networks with a Dynamic
Structured Pruning Method for Autonomous Driving [63.155562267383864]
Deep reinforcement learning (DRL) has shown remarkable success in complex autonomous driving scenarios.
DRL models inevitably bring high memory consumption and computation, which hinders their wide deployment in resource-limited autonomous driving devices.
We introduce a novel dynamic structured pruning approach that gradually removes a DRL model's unimportant neurons during the training stage.
arXiv Detail & Related papers (2024-02-07T09:00:30Z) - Learning-based agricultural management in partially observable
environments subject to climate variability [5.5062239803516615]
Agricultural management holds a central role in shaping crop yield, economic profitability, and environmental sustainability.
We introduce an innovative framework that integrates Deep Reinforcement Learning (DRL) with Recurrent Neural Networks (RNNs)
Our study illuminates the need for agent retraining to acquire new optimal policies under extreme weather events.
arXiv Detail & Related papers (2024-01-02T16:18:53Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Prompt-Tuning Decision Transformer with Preference Ranking [83.76329715043205]
We propose the Prompt-Tuning DT algorithm to address challenges by using trajectory segments as prompts to guide RL agents in acquiring environmental information.
Our approach involves randomly sampling a Gaussian distribution to fine-tune the elements of the prompt trajectory and using preference ranking function to find the optimization direction.
Our work contributes to the advancement of prompt-tuning approaches in RL, providing a promising direction for optimizing large RL agents for specific preference tasks.
arXiv Detail & Related papers (2023-05-16T17:49:04Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Optimizing Crop Management with Reinforcement Learning and Imitation
Learning [9.69704937572711]
We present an intelligent crop management system which optimize the N fertilization and irrigation simultaneously via reinforcement learning (RL), imitation learning (IL), and crop simulations.
We conduct experiments on a case study using maize in Florida and compare trained policies with a maize management guideline in simulations.
Our trained policies under both full and partial observations achieve better outcomes, resulting in a higher profit or a similar profit with a smaller environmental impact.
arXiv Detail & Related papers (2022-09-20T20:48:52Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.