Meta Hamiltonian Learning
- URL: http://arxiv.org/abs/2104.04453v1
- Date: Fri, 9 Apr 2021 16:01:34 GMT
- Title: Meta Hamiltonian Learning
- Authors: Przemyslaw Bienias, Alireza Seif, Mohammad Hafezi
- Abstract summary: We use a machine learning technique known as meta-learning to learn a more efficient drifting for this task.
We observe that the meta-optimizer outperforms other optimization methods in average loss over test samples.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient characterization of quantum devices is a significant challenge
critical for the development of large scale quantum computers. We consider an
experimentally motivated situation, in which we have a decent estimate of the
Hamiltonian, and its parameters need to be characterized and fine-tuned
frequently to combat drifting experimental variables. We use a machine learning
technique known as meta-learning to learn a more efficient optimizer for this
task. We consider training with the nearest-neighbor Ising model and study the
trained model's generalizability to other Hamiltonian models and larger system
sizes. We observe that the meta-optimizer outperforms other optimization
methods in average loss over test samples. This advantage follows from the
meta-optimizer being less likely to get stuck in local minima, which highly
skews the distribution of the final loss of the other optimizers. In general,
meta-learning decreases the number of calls to the experiment and reduces the
needed classical computational resources.
Related papers
- Prototype Optimization with Neural ODE for Few-Shot Learning [41.743442773121444]
FewShot Learning is a challenging task, which aims to recognize novel classes with few examples.
Due to the data scarcity, mean-based prototypes are usually biased.
We propose a novel prototype optimization framework to rectify prototypes, i.e., introducing a meta-optimizer to optimize prototypes.
arXiv Detail & Related papers (2024-11-19T06:17:25Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Metamizer: a versatile neural optimizer for fast and accurate physics simulations [4.717325308876749]
We introduce Metamizer, a novel neural network that iteratively solves a wide range of physical systems with high accuracy.
We demonstrate that Metamizer achieves unprecedented accuracy for deep learning based approaches.
Our results suggest that Metamizer could have a profound impact on future numerical solvers.
arXiv Detail & Related papers (2024-10-10T11:54:31Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
We introduce low-memory optimization with adaptive learning rate (AdaLomo) for large language models.
AdaLomo results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
arXiv Detail & Related papers (2023-10-16T09:04:28Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Unsupervised Learning for Combinatorial Optimization Needs Meta-Learning [14.86600327306136]
A general framework of unsupervised learning for optimization (CO) is to train a neural network (NN) whose output gives a problem solution by directly optimizing the CO objective.
We propose a new objective of unsupervised learning for CO where the goal of learning is to search for good initialization for future problem instances rather than give direct solutions.
We observe that even just the initial solution given by our model before fine-tuning can significantly outperform the baselines under various evaluation settings.
arXiv Detail & Related papers (2023-01-08T22:14:59Z) - Precision Machine Learning [5.15188009671301]
We compare various function approximation methods and study how they scale with increasing parameters and data.
We find that neural networks can often outperform classical approximation methods on high-dimensional examples.
We develop training tricks which enable us to train neural networks to extremely low loss, close to the limits allowed by numerical precision.
arXiv Detail & Related papers (2022-10-24T17:58:30Z) - Learning to Optimize Quasi-Newton Methods [22.504971951262004]
This paper introduces a novel machine learning called LODO, which tries to online meta-learn the best preconditioner during optimization.
Unlike other L2O methods, LODO does not require any meta-training on a training task distribution.
We show that our gradient approximates the inverse Hessian in noisy loss landscapes and is capable of representing a wide range of inverse Hessians.
arXiv Detail & Related papers (2022-10-11T03:47:14Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.