Precision Machine Learning
- URL: http://arxiv.org/abs/2210.13447v1
- Date: Mon, 24 Oct 2022 17:58:30 GMT
- Title: Precision Machine Learning
- Authors: Eric J. Michaud, Ziming Liu, Max Tegmark
- Abstract summary: We compare various function approximation methods and study how they scale with increasing parameters and data.
We find that neural networks can often outperform classical approximation methods on high-dimensional examples.
We develop training tricks which enable us to train neural networks to extremely low loss, close to the limits allowed by numerical precision.
- Score: 5.15188009671301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore unique considerations involved in fitting ML models to data with
very high precision, as is often required for science applications. We
empirically compare various function approximation methods and study how they
scale with increasing parameters and data. We find that neural networks can
often outperform classical approximation methods on high-dimensional examples,
by auto-discovering and exploiting modular structures therein. However, neural
networks trained with common optimizers are less powerful for low-dimensional
cases, which motivates us to study the unique properties of neural network loss
landscapes and the corresponding optimization challenges that arise in the high
precision regime. To address the optimization issue in low dimensions, we
develop training tricks which enable us to train neural networks to extremely
low loss, close to the limits allowed by numerical precision.
Related papers
- Just How Flexible are Neural Networks in Practice? [89.80474583606242]
It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters.
In practice, however, we only find solutions via our training procedure, including the gradient and regularizers, limiting flexibility.
arXiv Detail & Related papers (2024-06-17T12:24:45Z) - Explicit Foundation Model Optimization with Self-Attentive Feed-Forward
Neural Units [4.807347156077897]
Iterative approximation methods using backpropagation enable the optimization of neural networks, but they remain computationally expensive when used at scale.
This paper presents an efficient alternative for optimizing neural networks that reduces the costs of scaling neural networks and provides high-efficiency optimizations for low-resource applications.
arXiv Detail & Related papers (2023-11-13T17:55:07Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
We build on intuition that neural operator learning inherently induces an approximation error.
We show that our approach reduces GPU memory usage by up to 50% and improves throughput by 58% with little or no reduction in accuracy.
arXiv Detail & Related papers (2023-07-27T17:42:06Z) - Physics Informed Piecewise Linear Neural Networks for Process
Optimization [0.0]
It is proposed to upgrade piece-wise linear neural network models with physics informed knowledge for optimization problems with neural network models embedded.
For all cases, physics-informed trained neural network based optimal results are closer to global optimality.
arXiv Detail & Related papers (2023-02-02T10:14:54Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
We propose a differentiable quantity, named GradCosine, with theoretical insights to evaluate the initial state of a neural network.
We show that both the training and test performance of a network can be improved by maximizing GradCosine under norm constraint.
Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost.
arXiv Detail & Related papers (2022-10-12T06:49:16Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Semi-Parametric Inducing Point Networks and Neural Processes [15.948270454686197]
Semi-parametric inducing point networks (SPIN) can query the training set at inference time in a compute-efficient manner.
SPIN attains linear complexity via a cross-attention mechanism between datapoints inspired by inducing point methods.
In our experiments, SPIN reduces memory requirements, improves accuracy across a range of meta-learning tasks, and improves state-of-the-art performance on an important practical problem, genotype imputation.
arXiv Detail & Related papers (2022-05-24T01:42:46Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Wide Network Learning with Differential Privacy [7.453881927237143]
Current generation of neural networks suffers significant loss accuracy under most practically relevant privacy training regimes.
We develop a general approach towards training these models that takes advantage of the sparsity of the gradients of private Empirical Minimization (ERM)
Following the same number of parameters, we propose a novel algorithm for privately training neural networks.
arXiv Detail & Related papers (2021-03-01T20:31:50Z) - Active Importance Sampling for Variational Objectives Dominated by Rare
Events: Consequences for Optimization and Generalization [12.617078020344618]
We introduce an approach that combines rare events sampling techniques with neural network optimization to optimize objective functions dominated by rare events.
We show that importance sampling reduces the variance of the solution to a learning problem, suggesting benefits for generalization.
Our numerical experiments demonstrate that we can successfully learn even with the compounding difficulties of high-dimensional and rare data.
arXiv Detail & Related papers (2020-08-11T23:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.