Bound State Solution Schr\"{o}dinger Equation for Extended Cornell
Potential at Finite Temperature
- URL: http://arxiv.org/abs/2104.04526v2
- Date: Sun, 23 May 2021 13:38:42 GMT
- Title: Bound State Solution Schr\"{o}dinger Equation for Extended Cornell
Potential at Finite Temperature
- Authors: A.I. Ahmadov, K.H. Abasova, M.Sh. Orucova
- Abstract summary: We study the finite temperature-dependent Schr"odinger equation by using the Nikiforov-Uvarov method.
We consider the sum of the Cornell, inverse quadratic, and harmonic-type potential as the potential part of the radial Schr"odinger equation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the finite temperature-dependent Schr\"{o}dinger
equation by using the Nikiforov-Uvarov method. We consider the sum of the
Cornell, inverse quadratic, and harmonic-type potential as the potential part
of the radial Schr\"{o}dinger equation. Analytical expressions for the energy
eigenvalues and the radial wave function are presented. Application of the
results for the heavy quarkonia and $B_c$ meson masses are good agreement with
the current experimental data except for zero angular momentum quantum numbers.
Numerical results for the temperature dependence indicates a different
behaviour for different quantum numbers. Temperature-dependent results are in
agreement with some QCD sum rule results from the ground states.
Related papers
- The Half Transform Ansatz: Quarkonium Dynamics in Quantum Phase Space [0.0]
We present a method to cast the Schrodinger Equation into a hyper-geometric form which can be solved for the phase space wave function and its energy eigenvalues.
We also analyze the behavior of these wave functions, which suggest a correlation between radial momentum and the upper limit of existence in charm-anticharm mesons.
arXiv Detail & Related papers (2023-03-28T23:38:57Z) - Eigen Solution and Thermodynamic Properties of Manning Rosen Plus
Exponential Yukawa Potential [0.0]
We obtained analytical bound state solution of the Schr"odinger equation with Manning Rosen plus Yukawa Potential.
The energy eigen equation was determined and presented in compact form.
arXiv Detail & Related papers (2023-03-21T11:56:32Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Approximate solutions of the Schrodinger equation with Hulthen-Hellmann
Potentials for a Quarkonium system [0.0]
Hulth'en plus Hellmann potentials are adopted as the quark-antiquark interaction potential.
Four special cases were considered when some of the potential parameters were set to zero.
arXiv Detail & Related papers (2021-01-02T00:02:41Z) - Analytical Investigation of Meson Spectrum via Exact Quantization Rule
Approach [0.0]
We solve the radial Schr"odinger equation analytically using the Exact Quantization Rule approach to obtain the energy eigenvalues with the Extended Cornell potential ECP.
The present potential provides excellent results in comparison with experimental data with a maximum error of 0.0065 GeV and work of other researchers.
arXiv Detail & Related papers (2020-12-19T09:40:26Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.