Scattering Neutrinos, Spin Models, and Permutations
- URL: http://arxiv.org/abs/2406.18677v1
- Date: Wed, 26 Jun 2024 18:27:15 GMT
- Title: Scattering Neutrinos, Spin Models, and Permutations
- Authors: Duff Neill, Hanqing Liu, Joshua Martin, Alessandro Roggero,
- Abstract summary: We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
- Score: 42.642008092347986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom. These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues, in distinction to the classic Heisenberg spin-glass models, leading to distinct behavior in both the high-temperature and low-temperature regimes. When the momenta of the neutrinos are uniform and random in directions, we can calculate the large-$N$ partition function for the quantum Heisenberg model. In particular, the high-temperature partition function predicts a non-Gaussian density of states, providing interesting counter-examples showing the limits of general theorems on the density of states for quantum spin models. We can repeat the same argument for classical Heisenberg models, also known as rotor models, and we find the high-temperature expansion is completely controlled by the eigenvalues of the coupling matrix, and again predicts non-Gaussian behavior for the density of states as long as the number of eigenvalues does not scale linearly with $N$. Indeed, we derive the amusing fact that these \emph{thermodynamic} partition functions are essentially the generating function for counting permutations in the high-temperature regime. Finally, for the case relevant to neutrinos in a supernova, we identify the low-temperature phase as a unique state with the direction of the momenta of the neutrino dictating its coherent state in flavor-space, a state we dub the "flavor-momentum-locked" state.
Related papers
- Once-in-a-lifetime encounter models for neutrino media: From coherent oscillations to flavor equilibration [0.0]
We develop new quantum models for neutrino gases in which any pair of neutrinos can interact at most once in their lifetimes.
These models demonstrate the emergence of coherent flavor oscillations from the particle perspective.
arXiv Detail & Related papers (2024-02-07T16:43:27Z) - Quantum to classical crossover in generalized spin systems -- the
temperature-dependent spin dynamics of FeI$_2$ [0.0]
We introduce a temperature-dependent normalization of the classical moments, whose magnitude is determined by imposing the quantum sum rule.
We show that this simple renormalization scheme significantly improves the agreement between the calculated and measured $S(mathbfq, omega)$ for FeI$_2$ at all temperatures.
arXiv Detail & Related papers (2023-10-30T18:13:05Z) - Dynamics of magnetization at infinite temperature in a Heisenberg spin chain [105.07522062418397]
In a chain of 46 superconducting qubits, we study the probability distribution, $P(mathcalM)$, of the magnetization transferred across the chain's center.
The first two moments of $P(mathcalM)$ show superdiffusive behavior, a hallmark of KPZ.
The third and fourth moments rule out the KPZ conjecture and allow for evaluating other theories.
arXiv Detail & Related papers (2023-06-15T17:58:48Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Multipartite entangled states in dipolar quantum simulators [0.0]
We show that the native Hamiltonian dynamics of state-of-the-art quantum simulation platforms can act as a robust source of multipartite entanglement.
Our results suggest that the native Hamiltonian dynamics of state-of-the-art quantum simulation platforms, such as Rydberg-atom arrays, can act as a robust source of multipartite entanglement.
arXiv Detail & Related papers (2022-05-08T16:23:48Z) - Experimental observation of thermalization with noncommuting charges [53.122045119395594]
Noncommuting charges have emerged as a subfield at the intersection of quantum thermodynamics and quantum information.
We simulate a Heisenberg evolution using laser-induced entangling interactions and collective spin rotations.
We find that small subsystems equilibrate to near a recently predicted non-Abelian thermal state.
arXiv Detail & Related papers (2022-02-09T19:00:00Z) - Kinetically Constrained Quantum Dynamics in Superconducting Circuits [0.7734726150561088]
We study the dynamical properties of the bosonic quantum East model at low temperature.
We show that quantum information remains localized within decoherence times tunable with the parameters of the system.
We propose an implementation of the bosonic quantum East model based on state-of-the-art superconducting circuits.
arXiv Detail & Related papers (2021-12-15T19:00:02Z) - When can localized spins interacting with conduction electrons in ferro-
or antiferromagnets be described classically via the Landau-Lifshitz
equation: Transition from quantum many-body entangled to quantum-classical
nonequilibrium states [0.0]
Quantum-classical dynamics can faithfully reproduce fully quantum dynamics in the F metallic case, but only when spin $S$, Heisenberg exchange between localized spins and $sd$ exchange are sufficiently small.
This reveals that quantum-classical dynamics can faithfully reproduce fully quantum dynamics in the F metallic case, but only when spin $S$, Heisenberg exchange between localized spins and $sd$ exchange are sufficiently small.
arXiv Detail & Related papers (2021-07-22T16:03:49Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.