Assessing the Heterogeneous Impact of Economy-Wide Shocks: A Machine Learning Approach Applied to Colombian Firms
- URL: http://arxiv.org/abs/2104.04570v2
- Date: Fri, 08 Nov 2024 17:19:01 GMT
- Title: Assessing the Heterogeneous Impact of Economy-Wide Shocks: A Machine Learning Approach Applied to Colombian Firms
- Authors: Marco Dueñas, Federico Nutarelli, Víctor Ortiz, Massimo Riccaboni, Francesco Serti,
- Abstract summary: We study the heterogeneous effects of economy-wide shocks on exports.
We find that the COVID-19 shock decreased a firm's probability of surviving in the export market by about 20 percentage points in April 2020.
- Score: 0.0
- License:
- Abstract: Our paper presents a methodology to study the heterogeneous effects of economy-wide shocks and applies it to the case of the impact of the COVID-19 crisis on exports. This methodology is applicable in scenarios where the pervasive nature of the shock hinders the identification of a control group unaffected by the shock, as well as the ex-ante definition of the intensity of the shock's exposure of each unit. In particular, our study investigates the effectiveness of various Machine Learning (ML) techniques in predicting firms' trade and, by building on recent developments in causal ML, uses these predictions to reconstruct the counterfactual distribution of firms' trade under different COVID-19 scenarios and to study treatment effect heterogeneity. Specifically, we focus on the probability of Colombian firms surviving in the export market under two different scenarios: a COVID-19 setting and a non-COVID-19 counterfactual situation. On average, we find that the COVID-19 shock decreased a firm's probability of surviving in the export market by about 20 percentage points in April 2020. We study the treatment effect heterogeneity by employing a classification analysis that compares the characteristics of the firms on the tails of the estimated distribution of the individual treatment effects.
Related papers
- Indiscriminate Disruption of Conditional Inference on Multivariate Gaussians [60.22542847840578]
Despite advances in adversarial machine learning, inference for Gaussian models in the presence of an adversary is notably understudied.
We consider a self-interested attacker who wishes to disrupt a decisionmaker's conditional inference and subsequent actions by corrupting a set of evidentiary variables.
To avoid detection, the attacker also desires the attack to appear plausible wherein plausibility is determined by the density of the corrupted evidence.
arXiv Detail & Related papers (2024-11-21T17:46:55Z) - Assessing the Impact of Case Correction Methods on the Fairness of COVID-19 Predictive Models [0.24999074238880484]
Two case correction methods are investigated for their impact on a COVID-19 case prediction task.
One of the correction methods improves fairness, decreasing differences in performance between majority-White and majority-minority counties.
While these results are mixed, it is evident that correction methods have the potential to exacerbate existing biases in COVID-19 case data.
arXiv Detail & Related papers (2024-05-16T16:26:21Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Evaluating shifts in mobility and COVID-19 case rates in U.S. counties:
A demonstration of modified treatment policies for causal inference with
continuous exposures [0.0]
We examined the impact of shifting the distribution of mobility on COVID-19 case rates from June 1 - November 14, 2020.
Ten mobility indices were selected to capture several aspects of behavior expected to influence and be influenced by COVID-19 case rates.
arXiv Detail & Related papers (2021-10-24T21:17:47Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Impact of Interventional Policies Including Vaccine on Covid-19
Propagation and Socio-Economic Factors [0.7874708385247353]
This study aims to provide a predictive analytics framework to model, predict and simulate COVID-19 propagation and socio-economic impact.
We have leveraged a recently launched open-source COVID-19 big data platform and used published research to find potentially relevant variables.
An advanced machine learning pipeline has been developed armed with a self-evolving model, deployed on a modern machine learning architecture.
arXiv Detail & Related papers (2021-01-11T15:08:07Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Targeted VAE: Variational and Targeted Learning for Causal Inference [39.351088248776435]
Undertaking causal inference with observational data is incredibly useful across a wide range of tasks.
There are two significant challenges associated with undertaking causal inference using observational data.
We address these two challenges by combining structured inference and targeted learning.
arXiv Detail & Related papers (2020-09-28T16:55:24Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Impact studies of nationwide measures COVID-19 anti-pandemic:
compartmental model and machine learning [0.0]
We study the impact of nationwide measures COVID-19 anti-pandemic.
We use two machine learning tools to forecast the evolution of the pandemic.
arXiv Detail & Related papers (2020-05-17T23:23:38Z) - When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
Policy Assessment using Compartmental Gaussian Processes [111.69190108272133]
coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures.
Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential.
This paper develops a Bayesian model for predicting the effects of COVID-19 lockdown policies in a global context.
arXiv Detail & Related papers (2020-05-13T18:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.