SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data
- URL: http://arxiv.org/abs/2110.14001v1
- Date: Tue, 26 Oct 2021 20:13:17 GMT
- Title: SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data
- Authors: Alicia Curth, Changhee Lee and Mihaela van der Schaar
- Abstract summary: We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
- Score: 83.50281440043241
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of inferring heterogeneous treatment effects from
time-to-event data. While both the related problems of (i) estimating treatment
effects for binary or continuous outcomes and (ii) predicting survival outcomes
have been well studied in the recent machine learning literature, their
combination -- albeit of high practical relevance -- has received considerably
less attention. With the ultimate goal of reliably estimating the effects of
treatments on instantaneous risk and survival probabilities, we focus on the
problem of learning (discrete-time) treatment-specific conditional hazard
functions. We find that unique challenges arise in this context due to a
variety of covariate shift issues that go beyond a mere combination of
well-studied confounding and censoring biases. We theoretically analyse their
effects by adapting recent generalization bounds from domain adaptation and
treatment effect estimation to our setting and discuss implications for model
design. We use the resulting insights to propose a novel deep learning method
for treatment-specific hazard estimation based on balancing representations. We
investigate performance across a range of experimental settings and empirically
confirm that our method outperforms baselines by addressing covariate shifts
from various sources.
Related papers
- Higher-Order Causal Message Passing for Experimentation with Complex Interference [6.092214762701847]
We introduce a new class of estimators based on causal message-passing, specifically designed for settings with pervasive, unknown interference.
Our estimator draws on information from the sample mean and variance of unit outcomes and treatments over time, enabling efficient use of observed data.
arXiv Detail & Related papers (2024-11-01T18:00:51Z) - The Blessings of Multiple Treatments and Outcomes in Treatment Effect
Estimation [53.81860494566915]
Existing studies leveraged proxy variables or multiple treatments to adjust for confounding bias.
In many real-world scenarios, there is greater interest in studying the effects on multiple outcomes.
We show that parallel studies of multiple outcomes involved in this setting can assist each other in causal identification.
arXiv Detail & Related papers (2023-09-29T14:33:48Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Interpretable Deep Causal Learning for Moderation Effects [0.0]
We address the problem of interpretability and targeted regularization in causal machine learning models.
We propose a novel deep counterfactual learning architecture for estimating individual treatment effects.
arXiv Detail & Related papers (2022-06-21T11:21:09Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
We investigate the task of estimating the conditional average causal effect of treatment-dosage pairs from a combination of observational data and assumptions on the causal relationships in the underlying system.
This has been a longstanding challenge for fields of study such as epidemiology or economics that require a treatment-dosage pair to make decisions.
We show empirically new state-of-the-art performance results across several benchmark datasets for this problem.
arXiv Detail & Related papers (2022-05-29T15:26:59Z) - Estimating heterogeneous survival treatment effect in observational data
using machine learning [9.951103976634407]
Methods for estimating heterogeneous treatment effect in observational data have largely focused on continuous or binary outcomes.
Using flexible machine learning methods in the counterfactual framework is a promising approach to address challenges due to complex individual characteristics.
arXiv Detail & Related papers (2020-08-17T01:02:14Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.