論文の概要: An Extended Epidemic Model on Interconnected Networks for COVID-19 to
Explore the Epidemic Dynamics
- arxiv url: http://arxiv.org/abs/2104.04695v1
- Date: Sat, 10 Apr 2021 06:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 05:35:02.974676
- Title: An Extended Epidemic Model on Interconnected Networks for COVID-19 to
Explore the Epidemic Dynamics
- Title(参考訳): COVID-19におけるインターコネクトネットワークのエピデミックモデルによるエピデミックダイナミクスの探索
- Authors: Ou Deng, Kiichi Tago, Qun Jin
- Abstract要約: パンデミックコントロールは、感染した個人の傾向や影響を捉える疫病モデルを必要とする。
多くのエキサイティングなモデルはこれを実装できるが、実践的な解釈性に欠ける。
本研究は疫学とネットワーク理論を融合し,因果解釈能力を持つ枠組みを提案する。
- 参考スコア(独自算出の注目度): 2.89591830279936
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: COVID-19 has resulted in a public health global crisis. The pandemic control
necessitates epidemic models that capture the trends and impacts on infectious
individuals. Many exciting models can implement this but they lack practical
interpretability. This study combines the epidemiological and network theories
and proposes a framework with causal interpretability in response to this
issue. This framework consists of an extended epidemic model in interconnected
networks and a dynamic structure that has major human mobility. The networked
causal analysis focuses on the stochastic processing mechanism. It highlights
the social infectivity as the intervention estimator between the observable
effect (the number of daily new cases) and unobservable causes (the number of
infectious persons). According to an experiment on the dataset for Tokyo
metropolitan areas, the computational results indicate the propagation features
of the symptomatic and asymptomatic infectious persons. These new
spatiotemporal findings can be beneficial for policy decision making.
- Abstract(参考訳): 新型コロナウイルス(covid-19)は世界的な公衆衛生危機を引き起こした。
パンデミックコントロールは、感染した個人の傾向や影響を捉える疫病モデルを必要とする。
多くのエキサイティングなモデルはこれを実装できるが、実践的な解釈性に欠ける。
本研究は疫学とネットワーク理論を結合し,この問題に対する因果解釈の枠組みを提案する。
このフレームワークは、相互接続ネットワークにおける拡張流行モデルと、人間の大きな移動性を持つ動的構造から構成される。
ネットワーク因果解析は確率的処理機構に焦点をあてる。
これは、観察可能な効果(毎日の新規症例数)と観察できない原因(感染者数)の間の介入推定手段としての社会的感染性を強調している。
東京都におけるデータセット実験により, 症状性および無症候性感染症の伝播特性が示唆された。
これらの新たな時空間的所見は、政策決定に有益である。
関連論文リスト
- Epidemiology-informed Graph Neural Network for Heterogeneity-aware Epidemic Forecasting [46.63739322178277]
最近の研究では、異種時相の流行パターンを抽出する際の時空間ニューラルネットワーク(STGNN)の強い可能性を示している。
HeatGNNは、疫学的にインフォームドされた場所を、時間とともに自分自身の伝達メカニズムを反映するさまざまな場所に埋め込むことを学ぶ。
HeatGNNは、HeatHeatのさまざまな強力なベースラインを異なるサイズで上回る。
論文 参考訳(メタデータ) (2024-11-26T12:29:45Z) - Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph [14.28921518883576]
持続疾患透過グラフ(EARTH)を用いた疫学対応ニューラル・オードという,革新的なエンドツーエンドフレームワークを提案する。
本稿ではまず,感染メカニズムとニューラルODEアプローチをシームレスに統合するEANOを提案する。
また,グローバルな感染動向をモデル化するためにGLTGを導入し,これらの信号を利用して局所的な感染を動的に誘導する。
論文 参考訳(メタデータ) (2024-09-28T04:07:16Z) - A Review of Graph Neural Networks in Epidemic Modeling [14.28921518883576]
新型コロナウイルスのパンデミックが始まって以来、疫学モデルの研究への関心が高まっている。
グラフニューラルネットワーク(Graph Neural Networks)は、伝染病の研究において、徐々に人気が高まっているツールだ。
論文 参考訳(メタデータ) (2024-03-28T21:54:48Z) - Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
比較疫学モデルは、疾患の状態に基づいて個人を分類する。
我々は、適応されたSEIRDモデルと市民のための意思決定モデルを組み合わせたABMアーキテクチャを提案する。
スペイン・ア・コルナにおけるSARS-CoV-2感染症の進行状況について検討した。
論文 参考訳(メタデータ) (2023-07-28T08:01:05Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Epicasting: An Ensemble Wavelet Neural Network (EWNet) for Forecasting
Epidemics [2.705025060422369]
感染性疾患は、世界中でヒトの病気や死亡の原因となっている。
感染拡大の予測は、利害関係者が目の前の状況に対処するのに役立つ。
論文 参考訳(メタデータ) (2022-06-21T19:31:25Z) - Digital Epidemiology: A review [0.0]
疫学は近年、計算モデルに基づく大きな進歩を目撃している。
ビッグデータとアプリによって、大規模な実データによるモデルの検証と精錬が可能になる。
エボラは、システム解を必要とするため、複雑性のレンズからアプローチする必要がある。
論文 参考訳(メタデータ) (2021-04-08T08:45:20Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
我々は、インフルエンザとCOVID-19が共存する新しいシナリオに、歴史的疾患予測モデルを「操る」ことができる神経伝達学習アーキテクチャであるCALI-Netを提案する。
我々の実験は、現在のパンデミックに歴史的予測モデルを適用することに成功していることを示している。
論文 参考訳(メタデータ) (2020-09-23T22:35:43Z) - A Data-driven Understanding of COVID-19 Dynamics Using Sequential
Genetic Algorithm Based Probabilistic Cellular Automata [4.36572039512405]
本研究は、この感染拡散の正確なデータ駆動モデリングのために、セルオートマトンが優れたプラットフォームを提供することを示唆する。
異なる大陸の40カ国で、新型コロナウイルスの統計分析が実施されている。
このモデルの実質的な予測力は、パンデミックのダイナミクスにおける主要なプレイヤーの結論とともに確立されている。
論文 参考訳(メタデータ) (2020-08-27T09:53:21Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。