論文の概要: Generating Physically-Consistent Satellite Imagery for Climate Visualizations
- arxiv url: http://arxiv.org/abs/2104.04785v5
- Date: Mon, 21 Oct 2024 15:50:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:53:15.390429
- Title: Generating Physically-Consistent Satellite Imagery for Climate Visualizations
- Title(参考訳): 気象観測のための物理的に安定な衛星画像の生成
- Authors: Björn Lütjens, Brandon Leshchinskiy, Océane Boulais, Farrukh Chishtie, Natalia Díaz-Rodríguez, Margaux Masson-Forsythe, Ana Mata-Payerro, Christian Requena-Mesa, Aruna Sankaranarayanan, Aaron Piña, Yarin Gal, Chedy Raïssi, Alexander Lavin, Dava Newman,
- Abstract要約: 我々は,将来的な洪水や森林再生イベントの合成衛星画像を作成するために,生成的敵ネットワークを訓練する。
純粋なディープラーニングベースのモデルでは、洪水の可視化を生成することができるが、洪水の影響を受けない場所では幻覚的な洪水が発生する。
我々は,地球観測におけるセグメンテーションガイドによる画像と画像の変換のためのコードとデータセットを公開している。
- 参考スコア(独自算出の注目度): 53.61991820941501
- License:
- Abstract: Deep generative vision models are now able to synthesize realistic-looking satellite imagery. But, the possibility of hallucinations prevents their adoption for risk-sensitive applications, such as generating materials for communicating climate change. To demonstrate this issue, we train a generative adversarial network (pix2pixHD) to create synthetic satellite imagery of future flooding and reforestation events. We find that a pure deep learning-based model can generate photorealistic flood visualizations but hallucinates floods at locations that were not susceptible to flooding. To address this issue, we propose to condition and evaluate generative vision models on segmentation maps of physics-based flood models. We show that our physics-conditioned model outperforms the pure deep learning-based model and a handcrafted baseline. We evaluate the generalization capability of our method to different remote sensing data and different climate-related events (reforestation). We publish our code and dataset which includes the data for a third case study of melting Arctic sea ice and $>$30,000 labeled HD image triplets -- or the equivalent of 5.5 million images at 128x128 pixels -- for segmentation guided image-to-image translation in Earth observation. Code and data is available at \url{https://github.com/blutjens/eie-earth-public}.
- Abstract(参考訳): 深部生成視覚モデルでは、現実的な衛星画像の合成が可能になった。
しかし、幻覚の可能性は、気候変動を伝達するための材料を生成するなど、リスクに敏感な応用に採用されることを防いでいる。
この問題を実証するために,我々は,将来的な洪水や森林再生イベントの合成衛星画像を作成するために,生成的敵ネットワーク (pix2pixHD) を訓練した。
純粋な深層学習に基づくモデルでは,フォトリアリスティックな洪水の可視化が可能であるが,洪水の影響を受けない場所では幻覚的な洪水が発生する。
そこで本研究では,物理に基づく洪水モデルのセグメンテーションマップに生成視覚モデルを適用し,評価する。
物理条件付きモデルは、純粋深層学習モデルと手作りベースラインよりも優れていることを示す。
本研究では,リモートセンシングデータと気候関連事象(森林再植)に対する手法の一般化能力を評価する。
われわれのコードとデータセットは、北極海氷と3万ドル相当のラベル付きHDイメージトリプレットのデータを含む3番目のケーススタディ、または地球観測における画像と画像のセグメンテーションのための128x128ピクセルの550万イメージに相当するデータを含む。
コードとデータは \url{https://github.com/blutjens/eie-earth-public} で公開されている。
関連論文リスト
- A General Albedo Recovery Approach for Aerial Photogrammetric Images through Inverse Rendering [7.874736360019618]
本稿では,自然光照射下での典型的な航空写真からのアルベド回収のための一般的な画像形成モデルを提案する。
我々のアプローチは、太陽の照明と風景の幾何学の両方が空中光度計で推定可能であるという事実に基づいている。
論文 参考訳(メタデータ) (2024-09-04T18:58:32Z) - Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion [77.34078223594686]
本稿では,3次元スパース表現に拡散モデルを導入し,それらをニューラルレンダリング技術と組み合わせることで,直接3次元シーン生成のための新しいアーキテクチャを提案する。
具体的には、まず3次元拡散モデルを用いて、所定の幾何学の点レベルのテクスチャ色を生成し、次にフィードフォワード方式でシーン表現に変換する。
2つの都市規模データセットを用いた実験により,衛星画像から写真リアルなストリートビュー画像シーケンスとクロスビュー都市シーンを生成する能力を示した。
論文 参考訳(メタデータ) (2024-01-19T16:15:37Z) - Stable Rivers: A Case Study in the Application of Text-to-Image
Generative Models for Earth Sciences [0.0]
テキスト・ツー・イメージ(TTI)生成モデルは、与えられたテキストストリング入力から画像を生成するために使用できる。
安定拡散のトレーニングデータとモデル性能における被検領域比のバイアスについて検討した。
その結果, 有名な河川や滝などの景観を過度に表現し, 形態的・環境的条件の過度に表現できることが判明した。
論文 参考訳(メタデータ) (2023-12-13T01:40:21Z) - HyperHuman: Hyper-Realistic Human Generation with Latent Structural Diffusion [114.15397904945185]
本稿では,高リアリズムと多彩なレイアウトの人体画像を生成する統一的なフレームワークHyperHumanを提案する。
本モデルは,統合ネットワークにおける画像の外観,空間的関係,幾何学の連成学習を強制する。
我々のフレームワークは最先端の性能を生み出し、多様なシナリオ下で超現実的な人間の画像を生成する。
論文 参考訳(メタデータ) (2023-10-12T17:59:34Z) - Seafloor-Invariant Caustics Removal from Underwater Imagery [0.0]
コースティックス(英: Caustics)は、波面によって屈折される光線の投射によって生じる複雑な物理現象である。
本研究では,浅海底画像に対する因果関係の影響を補正する新しい手法を提案する。
特に,画像画素を"非因果的"と"因果的"に分類するために,ディープラーニングアーキテクチャを用いた。
論文 参考訳(メタデータ) (2022-12-20T11:11:02Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
提案手法では,自然画像に対する基本的エンドツーエンド再構築フレームワークを導入し,正確な地平のポーズが得られない。
そこで,モデルが解の第一の推算を生成するハイブリッド・インバージョン・スキームを適用する。
当社のフレームワークでは,イメージを10ステップでデレンダリングすることが可能で,現実的なシナリオで使用することが可能です。
論文 参考訳(メタデータ) (2022-11-21T17:42:42Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
本稿では、識別器アーキテクチャを再考することにより、生成画像の品質を向上させることを提案する。
シーンセグメンテーションマップや人体ポーズといったセマンティックインプットによって画像が生成されるという問題に焦点が当てられている。
我々は,意味的セグメンテーション,コンテンツ再構成,および粗い粒度の逆解析を行うのに十分な情報をエンコードする,共有潜在表現を学習することを目指している。
論文 参考訳(メタデータ) (2021-12-09T18:59:21Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
我々は,現在および将来の沿岸洪水の衛星画像を生成する深層学習パイプラインを構築した。
物理に基づく洪水図と比較して画像を評価することにより,提案手法は物理的一貫性とフォトリアリズムの両方において,ベースラインモデルよりも優れていることがわかった。
この研究は沿岸の洪水の可視化に焦点が当てられているが、気候変動が地球をどう形作るかのグローバルな可視化を作成することを想定している。
論文 参考訳(メタデータ) (2020-10-16T02:15:34Z) - Breaking the Limits of Remote Sensing by Simulation and Deep Learning
for Flood and Debris Flow Mapping [13.167695669500391]
リモートセンシング画像から浸水深度と破砕流による地形変形を推定する枠組みを提案する。
水と破片の流れシミュレータは、様々な人工災害シナリオのトレーニングデータを生成する。
このような合成データに基づいてトレーニングされた注意U-NetおよびLinkNetアーキテクチャに基づく回帰モデルにより,最大水位と地形変形を予測することができることを示す。
論文 参考訳(メタデータ) (2020-06-09T10:59:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。