論文の概要: Latent Code-Based Fusion: A Volterra Neural Network Approach
- arxiv url: http://arxiv.org/abs/2104.04829v1
- Date: Sat, 10 Apr 2021 18:29:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-15 08:47:35.533117
- Title: Latent Code-Based Fusion: A Volterra Neural Network Approach
- Title(参考訳): 潜在コードベースの融合:volterraニューラルネットワークアプローチ
- Authors: Sally Ghanem, Siddharth Roheda, and Hamid Krim
- Abstract要約: 最近導入されたVolterra Neural Networks(VNN)を用いた深層構造エンコーダを提案する。
提案手法は,cnnベースのオートエンコーダに対して,より頑健な分類性能を持つサンプル複雑性を示す。
- 参考スコア(独自算出の注目度): 21.25021807184103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a deep structure encoder using the recently introduced Volterra
Neural Networks (VNNs) to seek a latent representation of multi-modal data
whose features are jointly captured by a union of subspaces. The so-called
self-representation embedding of the latent codes leads to a simplified fusion
which is driven by a similarly constructed decoding. The Volterra Filter
architecture achieved reduction in parameter complexity is primarily due to
controlled non-linearities being introduced by the higher-order convolutions in
contrast to generalized activation functions. Experimental results on two
different datasets have shown a significant improvement in the clustering
performance for VNNs auto-encoder over conventional Convolutional Neural
Networks (CNNs) auto-encoder. In addition, we also show that the proposed
approach demonstrates a much-improved sample complexity over CNN-based
auto-encoder with a superb robust classification performance.
- Abstract(参考訳): 本稿では,最近導入されたVolterra Neural Networks (VNN) を用いた深層構造エンコーダを提案する。
いわゆる自己表現の埋め込みは、同様に構築されたデコードによって駆動される単純な融合をもたらす。
パラメータ複雑性の低減を達成したボルテラフィルタアーキテクチャは、主に一般化されたアクティベーション関数とは対照的に高次畳み込みによって導入された制御された非線形性に起因する。
2つの異なるデータセットの実験結果から、従来の畳み込みニューラルネットワーク(CNN)オートエンコーダよりも、VNNの自動エンコーダのクラスタリング性能が大幅に向上した。
さらに,提案手法は,CNNベースのオートエンコーダに比べて,非常に頑健な分類性能を有する,非常に改良されたサンプル複雑性を示す。
関連論文リスト
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
生成的モデリングにおいて、多くの成功したアプローチは、例えば安定拡散のような低次元の潜在空間を利用する。
本研究では, モデル複雑性の観点から潜在空間を再考することにより, 未探索の話題に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-07-17T07:12:29Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Global-Local Path Networks for Monocular Depth Estimation with Vertical
CutDepth [24.897377434844266]
単分子深度推定のための新しい構造とトレーニング戦略を提案する。
階層型トランスフォーマーエンコーダをデプロイして,グローバルなコンテキストをキャプチャし,伝達し,軽量で強力なデコーダを設計する。
我々のネットワークは、挑戦的な深度データセットNYU Depth V2に対して最先端の性能を達成する。
論文 参考訳(メタデータ) (2022-01-19T06:37:21Z) - Deep clustering with fusion autoencoder [0.0]
ディープクラスタリング(DC)モデルは、オートエンコーダを利用して、結果としてクラスタリングプロセスを促進する固有の特徴を学ぶ。
本稿では、この問題に対処するための新しいDC法を提案し、特に、生成逆数ネットワークとVAEを融合オートエンコーダ(FAE)と呼ばれる新しいオートエンコーダに結合する。
論文 参考訳(メタデータ) (2022-01-11T07:38:03Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
我々は、畳み込み動的アライメントネットワーク(CoDA Nets)と呼ばれる新しいニューラルネットワークモデルを紹介する。
彼らの中核となるビルディングブロックは動的アライメントユニット(DAU)であり、タスク関連パターンに合わせて動的に計算された重みベクトルで入力を変換するように最適化されている。
CoDAネットは一連の入力依存線形変換を通じて分類予測をモデル化し、出力を個々の入力コントリビューションに線形分解することができる。
論文 参考訳(メタデータ) (2021-09-27T12:39:46Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
画像生成装置(デコーダ)を構築するための新しいニューラルネットワークを導入し、可変オートエンコーダ(VAE)に適用する。
空間依存ネットワーク(sdns)では、ディープニューラルネットの各レベルにおける特徴マップを空間的にコヒーレントな方法で計算する。
空間依存層による階層型vaeのデコーダの強化は密度推定を大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-03-16T07:01:08Z) - Faster Convergence in Deep-Predictive-Coding Networks to Learn Deeper
Representations [12.716429755564821]
DPCN(Deep-Predictive-Coding Network)は、フィードフォワードとフィードバック接続に依存する階層的な生成モデルである。
DPCNの重要な要素は、動的モデルのスパース状態を明らかにする前向きの推論手順である。
我々は,加速近位勾配に基づく実験的および理論的収束性の向上した最適化戦略を提案する。
論文 参考訳(メタデータ) (2021-01-18T02:30:13Z) - Sparse aNETT for Solving Inverse Problems with Deep Learning [2.5234156040689237]
逆問題を解決するためのスパース再構成フレームワーク(aNETT)を提案する。
非線形スペーシング変換として機能するオートエンコーダネットワーク$D circ E$をトレーニングする。
スパースCTでは数値的な結果が得られた。
論文 参考訳(メタデータ) (2020-04-20T18:43:13Z) - Volterra Neural Networks (VNNs) [24.12314339259243]
本稿では,畳み込みニューラルネットワークの複雑性を低減するために,Volterraフィルタにインスパイアされたネットワークアーキテクチャを提案する。
本稿では,Volterra Neural Network(VNN)の並列実装とその性能について述べる。
提案手法は,動作認識のためのUCF-101およびHMDB-51データセットを用いて評価し,CNN手法よりも優れていた。
論文 参考訳(メタデータ) (2019-10-21T19:22:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。