Group Equivariant Neural Architecture Search via Group Decomposition and
Reinforcement Learning
- URL: http://arxiv.org/abs/2104.04848v1
- Date: Sat, 10 Apr 2021 19:37:25 GMT
- Title: Group Equivariant Neural Architecture Search via Group Decomposition and
Reinforcement Learning
- Authors: Sourya Basu, Akshayaa Magesh, Harshit Yadav, Lav R. Varshney
- Abstract summary: We prove a new group-theoretic result in the context of equivariant neural networks.
We also design an algorithm to construct equivariant networks that significantly improves computational complexity.
We use deep Q-learning to search for group equivariant networks that maximize performance.
- Score: 17.291131923335918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent works show that including group equivariance as an inductive bias
improves neural network performance for both classification and generation
tasks. Designing group-equivariant neural networks is, however, challenging
when the group of interest is large and is unknown. Moreover, inducing
equivariance can significantly reduce the number of independent parameters in a
network with fixed feature size, affecting its overall performance. We address
these problems by proving a new group-theoretic result in the context of
equivariant neural networks that shows that a network is equivariant to a large
group if and only if it is equivariant to smaller groups from which it is
constructed. We also design an algorithm to construct equivariant networks that
significantly improves computational complexity. Further, leveraging our
theoretical result, we use deep Q-learning to search for group equivariant
networks that maximize performance, in a significantly reduced search space
than naive approaches, yielding what we call autoequivariant networks (AENs).
To evaluate AENs, we construct and release new benchmark datasets, G-MNIST and
G-Fashion-MNIST, obtained via group transformations on MNIST and Fashion-MNIST
respectively. We show that AENs find the right balance between group
equivariance and number of parameters, thereby consistently having good task
performance.
Related papers
- Self-Supervised Learning for Group Equivariant Neural Networks [75.62232699377877]
Group equivariant neural networks are the models whose structure is restricted to commute with the transformations on the input.
We propose two concepts for self-supervised tasks: equivariant pretext labels and invariant contrastive loss.
Experiments on standard image recognition benchmarks demonstrate that the equivariant neural networks exploit the proposed self-supervised tasks.
arXiv Detail & Related papers (2023-03-08T08:11:26Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
We address the problem of improving the performance and in particular the sample complexity of deep neural networks.
Group-equivariant convolutions are a popular approach to obtain equivariant representations.
We propose a multi-stream architecture, where each stream is invariant to a different transformation.
arXiv Detail & Related papers (2023-03-02T20:44:45Z) - Equivariant Transduction through Invariant Alignment [71.45263447328374]
We introduce a novel group-equivariant architecture that incorporates a group-in hard alignment mechanism.
We find that our network's structure allows it to develop stronger equivariant properties than existing group-equivariant approaches.
We additionally find that it outperforms previous group-equivariant networks empirically on the SCAN task.
arXiv Detail & Related papers (2022-09-22T11:19:45Z) - Equivariance versus Augmentation for Spherical Images [0.7388859384645262]
We analyze the role of rotational equivariance in convolutional neural networks (CNNs) applied to spherical images.
We compare the performance of the group equivariant networks known as S2CNNs and standard non-equivariant CNNs trained with an increasing amount of data augmentation.
arXiv Detail & Related papers (2022-02-08T16:49:30Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - Implicit Equivariance in Convolutional Networks [1.911678487931003]
Implicitly Equivariant Networks (IEN) induce equivariant in the different layers of a standard CNN model.
We show IEN outperforms the state-of-the-art rotation equivariant tracking method while providing faster inference speed.
arXiv Detail & Related papers (2021-11-28T14:44:17Z) - Exploiting Redundancy: Separable Group Convolutional Networks on Lie
Groups [14.029933823101084]
Group convolutional neural networks (G-CNNs) have been shown to increase parameter efficiency and model accuracy.
In this work, we investigate the properties of representations learned by regular G-CNNs, and show considerable parameter redundancy in group convolution kernels.
We introduce convolution kernels that are separable over the subgroup and channel dimensions.
arXiv Detail & Related papers (2021-10-25T15:56:53Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - LieTransformer: Equivariant self-attention for Lie Groups [49.9625160479096]
Group equivariant neural networks are used as building blocks of group invariant neural networks.
We extend the scope of the literature to self-attention, that is emerging as a prominent building block of deep learning models.
We propose the LieTransformer, an architecture composed of LieSelfAttention layers that are equivariant to arbitrary Lie groups and their discrete subgroups.
arXiv Detail & Related papers (2020-12-20T11:02:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.