Equivariance versus Augmentation for Spherical Images
- URL: http://arxiv.org/abs/2202.03990v1
- Date: Tue, 8 Feb 2022 16:49:30 GMT
- Title: Equivariance versus Augmentation for Spherical Images
- Authors: Jan E. Gerken, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson,
Christoffer Petersson, Daniel Persson
- Abstract summary: We analyze the role of rotational equivariance in convolutional neural networks (CNNs) applied to spherical images.
We compare the performance of the group equivariant networks known as S2CNNs and standard non-equivariant CNNs trained with an increasing amount of data augmentation.
- Score: 0.7388859384645262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the role of rotational equivariance in convolutional neural
networks (CNNs) applied to spherical images. We compare the performance of the
group equivariant networks known as S2CNNs and standard non-equivariant CNNs
trained with an increasing amount of data augmentation. The chosen
architectures can be considered baseline references for the respective design
paradigms. Our models are trained and evaluated on single or multiple items
from the MNIST or FashionMNIST dataset projected onto the sphere. For the task
of image classification, which is inherently rotationally invariant, we find
that by considerably increasing the amount of data augmentation and the size of
the networks, it is possible for the standard CNNs to reach at least the same
performance as the equivariant network. In contrast, for the inherently
equivariant task of semantic segmentation, the non-equivariant networks are
consistently outperformed by the equivariant networks with significantly fewer
parameters. We also analyze and compare the inference latency and training
times of the different networks, enabling detailed tradeoff considerations
between equivariant architectures and data augmentation for practical problems.
The equivariant spherical networks used in the experiments will be made
available at https://github.com/JanEGerken/sem_seg_s2cnn .
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Revisiting Data Augmentation for Rotational Invariance in Convolutional
Neural Networks [0.29127054707887967]
We investigate how best to include rotational invariance in a CNN for image classification.
Our experiments show that networks trained with data augmentation alone can classify rotated images nearly as well as in the normal unrotated case.
arXiv Detail & Related papers (2023-10-12T15:53:24Z) - Using and Abusing Equivariance [10.70891251559827]
We show how Group Equivariant Convolutional Neural Networks use subsampling to learn to break equivariance to their symmetries.
We show that a change in the input dimension of a network as small as a single pixel can be enough for commonly used architectures to become approximately equivariant, rather than exactly.
arXiv Detail & Related papers (2023-08-22T09:49:26Z) - SO(2) and O(2) Equivariance in Image Recognition with
Bessel-Convolutional Neural Networks [63.24965775030674]
This work presents the development of Bessel-convolutional neural networks (B-CNNs)
B-CNNs exploit a particular decomposition based on Bessel functions to modify the key operation between images and filters.
Study is carried out to assess the performances of B-CNNs compared to other methods.
arXiv Detail & Related papers (2023-04-18T18:06:35Z) - What Affects Learned Equivariance in Deep Image Recognition Models? [10.590129221143222]
We find evidence for a correlation between learned translation equivariance and validation accuracy on ImageNet.
Data augmentation, reduced model capacity and inductive bias in the form of convolutions induce higher learned equivariance in neural networks.
arXiv Detail & Related papers (2023-04-05T17:54:25Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
We address the problem of improving the performance and in particular the sample complexity of deep neural networks.
Group-equivariant convolutions are a popular approach to obtain equivariant representations.
We propose a multi-stream architecture, where each stream is invariant to a different transformation.
arXiv Detail & Related papers (2023-03-02T20:44:45Z) - The Lie Derivative for Measuring Learned Equivariance [84.29366874540217]
We study the equivariance properties of hundreds of pretrained models, spanning CNNs, transformers, and Mixer architectures.
We find that many violations of equivariance can be linked to spatial aliasing in ubiquitous network layers, such as pointwise non-linearities.
For example, transformers can be more equivariant than convolutional neural networks after training.
arXiv Detail & Related papers (2022-10-06T15:20:55Z) - Implicit Equivariance in Convolutional Networks [1.911678487931003]
Implicitly Equivariant Networks (IEN) induce equivariant in the different layers of a standard CNN model.
We show IEN outperforms the state-of-the-art rotation equivariant tracking method while providing faster inference speed.
arXiv Detail & Related papers (2021-11-28T14:44:17Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - Group Equivariant Neural Architecture Search via Group Decomposition and
Reinforcement Learning [17.291131923335918]
We prove a new group-theoretic result in the context of equivariant neural networks.
We also design an algorithm to construct equivariant networks that significantly improves computational complexity.
We use deep Q-learning to search for group equivariant networks that maximize performance.
arXiv Detail & Related papers (2021-04-10T19:37:25Z) - Learning Invariances in Neural Networks [51.20867785006147]
We show how to parameterize a distribution over augmentations and optimize the training loss simultaneously with respect to the network parameters and augmentation parameters.
We can recover the correct set and extent of invariances on image classification, regression, segmentation, and molecular property prediction from a large space of augmentations.
arXiv Detail & Related papers (2020-10-22T17:18:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.