Representation Learning for Networks in Biology and Medicine:
Advancements, Challenges, and Opportunities
- URL: http://arxiv.org/abs/2104.04883v1
- Date: Sun, 11 Apr 2021 00:20:00 GMT
- Title: Representation Learning for Networks in Biology and Medicine:
Advancements, Challenges, and Opportunities
- Authors: Michelle M. Li, Kexin Huang, Marinka Zitnik
- Abstract summary: We have witnessed a rapid expansion of representation learning techniques into modeling, analysis, and learning with networks.
In this review, we put forward an observation that long-standing principles of network biology and medicine can provide the conceptual grounding for representation learning.
We synthesize a spectrum of algorithmic approaches that leverage topological features to embed networks into compact vector spaces.
- Score: 18.434430658837258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the remarkable success of representation learning in providing powerful
predictions and data insights, we have witnessed a rapid expansion of
representation learning techniques into modeling, analysis, and learning with
networks. Biomedical networks are universal descriptors of systems of
interacting elements, from protein interactions to disease networks, all the
way to healthcare systems and scientific knowledge. In this review, we put
forward an observation that long-standing principles of network biology and
medicine -- while often unspoken in machine learning research -- can provide
the conceptual grounding for representation learning, explain its current
successes and limitations, and inform future advances. We synthesize a spectrum
of algorithmic approaches that, at their core, leverage topological features to
embed networks into compact vector spaces. We also provide a taxonomy of
biomedical areas that are likely to benefit most from algorithmic innovation.
Representation learning techniques are becoming essential for identifying
causal variants underlying complex traits, disentangling behaviors of single
cells and their impact on health, and diagnosing and treating diseases with
safe and effective medicines.
Related papers
- Unified Representation of Genomic and Biomedical Concepts through Multi-Task, Multi-Source Contrastive Learning [45.6771125432388]
We introduce GENomic REpresentation with Language Model (GENEREL)
GENEREL is a framework designed to bridge genetic and biomedical knowledge bases.
Our experiments demonstrate GENEREL's ability to effectively capture the nuanced relationships between SNPs and clinical concepts.
arXiv Detail & Related papers (2024-10-14T04:19:52Z) - Simplicity within biological complexity [0.0]
We survey the literature and argue for the development of a comprehensive framework for embedding of multi-scale molecular network data.
Network embedding methods map nodes to points in low-dimensional space, so that proximity in the learned space reflects the network's topology-function relationships.
We propose to develop a general, comprehensive embedding framework for multi-omic network data, from models to efficient and scalable software implementation.
arXiv Detail & Related papers (2024-05-15T13:32:45Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
We investigate the information processing strategies adopted by simple artificial neural networks performing a variety of cognitive tasks.
Results show that synergy increases as neural networks learn multiple diverse tasks.
randomly turning off neurons during training through dropout increases network redundancy, corresponding to an increase in robustness.
arXiv Detail & Related papers (2022-10-06T15:36:27Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Generalized Shape Metrics on Neural Representations [26.78835065137714]
We provide a family of metric spaces that quantify representational dissimilarity.
We modify existing representational similarity measures based on canonical correlation analysis to satisfy the triangle inequality.
We identify relationships between neural representations that are interpretable in terms of anatomical features and model performance.
arXiv Detail & Related papers (2021-10-27T19:48:55Z) - A Survey on Graph-Based Deep Learning for Computational Histopathology [36.58189530598098]
We have witnessed a rapid expansion of the use of machine learning and deep learning for the analysis of digital pathology and biopsy image patches.
Traditional learning over patch-wise features using convolutional neural networks limits the model when attempting to capture global contextual information.
We provide a conceptual grounding of graph-based deep learning and discuss its current success for tumor localization and classification, tumor invasion and staging, image retrieval, and survival prediction.
arXiv Detail & Related papers (2021-07-01T07:50:35Z) - Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past,
Present and Future [36.58189530598098]
It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data.
A major limitation of existing methods has been the focus on grid-like data.
graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system.
arXiv Detail & Related papers (2021-05-27T13:32:45Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.