Machine Learning in Nano-Scale Biomedical Engineering
- URL: http://arxiv.org/abs/2008.02195v2
- Date: Wed, 21 Oct 2020 14:58:20 GMT
- Title: Machine Learning in Nano-Scale Biomedical Engineering
- Authors: Alexandros-Apostolos A. Boulogeorgos, Stylianos E. Trevlakis, Sotiris
A. Tegos, Vasilis K. Papanikolaou, and George K. Karagiannidis
- Abstract summary: We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
- Score: 77.75587007080894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) empowers biomedical systems with the capability to
optimize their performance through modeling of the available data extremely
well, without using strong assumptions about the modeled system. Especially in
nano-scale biosystems, where the generated data sets are too vast and complex
to mentally parse without computational assist, ML is instrumental in analyzing
and extracting new insights, accelerating material and structure discoveries,
and designing experience as well as supporting nano-scale communications and
networks. However, despite these efforts, the use of ML in nano-scale
biomedical engineering remains still under-explored in certain areas and
research challenges are still open in fields such as structure and material
design and simulations, communications and signal processing, and bio-medicine
applications. In this article, we review the existing research regarding the
use of ML in nano-scale biomedical engineering. In more detail, we first
identify and discuss the main challenges that can be formulated as ML problems.
These challenges are classified into the three aforementioned main categories.
Next, we discuss the state of the art ML methodologies that are used to
countermeasure the aforementioned challenges. For each of the presented
methodologies, special emphasis is given to its principles, applications, and
limitations. Finally, we conclude the article with insightful discussions, that
reveal research gaps and highlight possible future research directions.
Related papers
- Integrating Chemistry Knowledge in Large Language Models via Prompt Engineering [2.140221068402338]
This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models (LLMs) in scientific domains.
A benchmark dataset is curated to the intricate physical-chemical properties of small molecules, their drugability for pharmacology, alongside the functional attributes of enzymes and crystal materials.
The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics.
arXiv Detail & Related papers (2024-04-22T16:55:44Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
Foundations models (FMs) have ushered in a new era in computational biology, especially in the realm of deep learning.
Central to our focus is the application of FMs to specific biological problems, aiming to guide the research community in choosing appropriate FMs for their research needs.
Review analyses challenges and limitations faced by FMs in biology, such as data noise, model explainability, and potential biases.
arXiv Detail & Related papers (2024-02-06T02:29:17Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Machine Learning for Uncovering Biological Insights in Spatial
Transcriptomics Data [0.0]
Development and homeostasis in multicellular systems require exquisite control over spatial molecular pattern formation and maintenance.
Advances in spatial transcriptomics (ST) have led to rapid development of innovative machine learning (ML) tools.
We summarize major ST analysis goals that ML can help address and current analysis trends.
arXiv Detail & Related papers (2023-03-29T14:22:08Z) - Interpretability from a new lens: Integrating Stratification and Domain
knowledge for Biomedical Applications [0.0]
This paper proposes a novel computational strategy for the stratification of biomedical problem datasets into k-fold cross-validation (CVs)
This approach can improve model stability, establish trust, and provide explanations for outcomes generated by trained IML models.
arXiv Detail & Related papers (2023-03-15T12:02:02Z) - Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey [6.288056740658763]
Graph Machine Learning (GML) has gained considerable attention for its exceptional ability to model graph-structured biomedical data.
Recent studies have proposed integrating external biomedical knowledge into the GML pipeline to realise more precise and interpretable drug discovery.
arXiv Detail & Related papers (2023-02-16T12:38:01Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
Data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces.
The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development.
arXiv Detail & Related papers (2022-10-04T13:48:59Z) - Functional Nanomaterials Design in the Workflow of Building
Machine-Learning Models [0.0]
Machine-learning (ML) techniques have revolutionized a host of research fields of chemical and materials science.
ML provides a more comprehensive insight into combinations with molecules/materials.
The key to the advances in nanomaterials discovery is how input fingerprints and output values can be linked quantitatively.
arXiv Detail & Related papers (2021-08-16T05:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.