Non-Autoregressive Semantic Parsing for Compositional Task-Oriented
Dialog
- URL: http://arxiv.org/abs/2104.04923v1
- Date: Sun, 11 Apr 2021 05:44:35 GMT
- Title: Non-Autoregressive Semantic Parsing for Compositional Task-Oriented
Dialog
- Authors: Arun Babu, Akshat Shrivastava, Armen Aghajanyan, Ahmed Aly, Angela Fan
and Marjan Ghazvininejad
- Abstract summary: We propose a non-autoregressive approach to predict semantic parse trees with an efficient seq2seq model architecture.
By combining non-autoregressive prediction with convolutional neural networks, we achieve significant latency gains and parameter size reduction.
- Score: 22.442123799917074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic parsing using sequence-to-sequence models allows parsing of deeper
representations compared to traditional word tagging based models. In spite of
these advantages, widespread adoption of these models for real-time
conversational use cases has been stymied by higher compute requirements and
thus higher latency. In this work, we propose a non-autoregressive approach to
predict semantic parse trees with an efficient seq2seq model architecture. By
combining non-autoregressive prediction with convolutional neural networks, we
achieve significant latency gains and parameter size reduction compared to
traditional RNN models. Our novel architecture achieves up to an 81% reduction
in latency on TOP dataset and retains competitive performance to non-pretrained
models on three different semantic parsing datasets. Our code is available at
https://github.com/facebookresearch/pytext
Related papers
- Loop Neural Networks for Parameter Sharing [1.1049608786515839]
We introduce a novel Loop Neural Network, which achieves better performance by utilizing longer computational time without increasing the model size.
Our approach revisits the input multiple times, refining the prediction by iteratively looping over a subset of the model with residual connections.
We demonstrate the effectiveness of this method through experiments comparing versions of GPT-2 with our loop models, showing improved performance in language modeling tasks while maintaining similar parameter counts.
arXiv Detail & Related papers (2024-09-21T17:07:42Z) - Inferring Data Preconditions from Deep Learning Models for Trustworthy
Prediction in Deployment [25.527665632625627]
It is important to reason about the trustworthiness of the model's predictions with unseen data during deployment.
Existing methods for specifying and verifying traditional software are insufficient for this task.
We propose a novel technique that uses rules derived from neural network computations to infer data preconditions.
arXiv Detail & Related papers (2024-01-26T03:47:18Z) - Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
We propose a neural network weight encoding method for network property prediction.
Our approach is capable of encoding neural networks in a model zoo of mixed architecture.
We introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture.
arXiv Detail & Related papers (2023-05-26T04:34:28Z) - Explainable Parallel RCNN with Novel Feature Representation for Time
Series Forecasting [0.0]
Time series forecasting is a fundamental challenge in data science.
We develop a parallel deep learning framework composed of RNN and CNN.
Extensive experiments on three datasets reveal the effectiveness of our method.
arXiv Detail & Related papers (2023-05-08T17:20:13Z) - Tiny Neural Models for Seq2Seq [0.0]
We propose a projection based encoder-decoder model referred to as pQRNN-MAtt.
The resulting quantized models are less than 3.5MB in size and are well suited for on-device latency critical applications.
We show that on MTOP, a challenging multilingual semantic parsing dataset, the average model performance surpasses LSTM based seq2seq model that uses pre-trained embeddings despite being 85x smaller.
arXiv Detail & Related papers (2021-08-07T00:39:42Z) - X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented
Compositional Semantic Parsing [51.81533991497547]
Task-oriented compositional semantic parsing (TCSP) handles complex nested user queries.
We present X2 compared a transferable Cross-lingual and Cross-domain for TCSP.
We propose to predict flattened intents and slots representations separately and cast both prediction tasks into sequence labeling problems.
arXiv Detail & Related papers (2021-06-07T16:40:05Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Span Pointer Networks for Non-Autoregressive Task-Oriented Semantic
Parsing [55.97957664897004]
An effective recipe for building seq2seq, non-autoregressive, task-orienteds to map utterances to semantic frames proceeds in three steps.
These models are typically bottlenecked by length prediction.
In our work, we propose non-autoregressives which shift the decoding task from text generation to span prediction.
arXiv Detail & Related papers (2021-04-15T07:02:35Z) - Revisiting Simple Neural Probabilistic Language Models [27.957834093475686]
This paper revisits the neural probabilistic language model (NPLM) ofcitetBengio2003ANP.
When scaled up to modern hardware, this model performs much better than expected on word-level language model benchmarks.
Inspired by this result, we modify the Transformer by replacing its first self-attention layer with the NPLM's local concatenation layer.
arXiv Detail & Related papers (2021-04-08T02:18:47Z) - Recognizing Long Grammatical Sequences Using Recurrent Networks
Augmented With An External Differentiable Stack [73.48927855855219]
Recurrent neural networks (RNNs) are a widely used deep architecture for sequence modeling, generation, and prediction.
RNNs generalize poorly over very long sequences, which limits their applicability to many important temporal processing and time series forecasting problems.
One way to address these shortcomings is to couple an RNN with an external, differentiable memory structure, such as a stack.
In this paper, we improve the memory-augmented RNN with important architectural and state updating mechanisms.
arXiv Detail & Related papers (2020-04-04T14:19:15Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.