Explainable Parallel RCNN with Novel Feature Representation for Time
Series Forecasting
- URL: http://arxiv.org/abs/2305.04876v3
- Date: Sat, 29 Jul 2023 14:46:43 GMT
- Title: Explainable Parallel RCNN with Novel Feature Representation for Time
Series Forecasting
- Authors: Jimeng Shi, Rukmangadh Myana, Vitalii Stebliankin, Azam Shirali and
Giri Narasimhan
- Abstract summary: Time series forecasting is a fundamental challenge in data science.
We develop a parallel deep learning framework composed of RNN and CNN.
Extensive experiments on three datasets reveal the effectiveness of our method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate time series forecasting is a fundamental challenge in data science.
It is often affected by external covariates such as weather or human
intervention, which in many applications, may be predicted with reasonable
accuracy. We refer to them as predicted future covariates. However, existing
methods that attempt to predict time series in an iterative manner with
autoregressive models end up with exponential error accumulations. Other
strategies hat consider the past and future in the encoder and decoder
respectively limit themselves by dealing with the historical and future data
separately. To address these limitations, a novel feature representation
strategy -- shifting -- is proposed to fuse the past data and future covariates
such that their interactions can be considered. To extract complex dynamics in
time series, we develop a parallel deep learning framework composed of RNN and
CNN, both of which are used hierarchically. We also utilize the skip connection
technique to improve the model's performance. Extensive experiments on three
datasets reveal the effectiveness of our method. Finally, we demonstrate the
model interpretability using the Grad-CAM algorithm.
Related papers
- KODA: A Data-Driven Recursive Model for Time Series Forecasting and Data Assimilation using Koopman Operators [14.429071321401953]
We propose a Koopman operator-based approach that integrates forecasting and data assimilation in nonlinear dynamical systems.
In particular we use a Fourier domain filter to disentangle the data into a physical component whose dynamics can be accurately represented by a Koopman operator.
We show that KODA outperforms existing state of the art methods on multiple time series benchmarks.
arXiv Detail & Related papers (2024-09-29T02:25:48Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
This work presents DGHL, a new family of generative models for time series anomaly detection.
A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently.
Our method outperformed current state-of-the-art models on four popular benchmark datasets.
arXiv Detail & Related papers (2022-02-15T17:19:44Z) - Deep Time Series Models for Scarce Data [8.673181404172963]
Time series data have grown at an explosive rate in numerous domains and have stimulated a surge of time series modeling research.
Data scarcity is a universal issue that occurs in a vast range of data analytics problems.
arXiv Detail & Related papers (2021-03-16T22:16:54Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
We present a representation learning framework for financial time series forecasting.
In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements.
arXiv Detail & Related papers (2020-02-18T15:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.