Machine learning and deep learning
- URL: http://arxiv.org/abs/2104.05314v2
- Date: Wed, 14 Apr 2021 10:31:01 GMT
- Title: Machine learning and deep learning
- Authors: Christian Janiesch, Patrick Zschech, Kai Heinrich
- Abstract summary: Machine learning describes the capacity of systems to learn from problem-specific training data.
Deep learning is a machine learning concept based on artificial neural networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today, intelligent systems that offer artificial intelligence capabilities
often rely on machine learning. Machine learning describes the capacity of
systems to learn from problem-specific training data to automate the process of
analytical model building and solve associated tasks. Deep learning is a
machine learning concept based on artificial neural networks. For many
applications, deep learning models outperform shallow machine learning models
and traditional data analysis approaches. In this article, we summarize the
fundamentals of machine learning and deep learning to generate a broader
understanding of the methodical underpinning of current intelligent systems. In
particular, we provide a conceptual distinction between relevant terms and
concepts, explain the process of automated analytical model building through
machine learning and deep learning, and discuss the challenges that arise when
implementing such intelligent systems in the field of electronic markets and
networked business. These naturally go beyond technological aspects and
highlight issues in human-machine interaction and artificial intelligence
servitization.
Related papers
- Coupling Machine Learning with Ontology for Robotics Applications [0.0]
The lack of availability of prior knowledge in dynamic scenarios is without doubt a major barrier for scalable machine intelligence.
My view of the interaction between the two tiers intelligence is based on the idea that when knowledge is not readily available at the knowledge base tier, more knowledge can be extracted from the other tier.
arXiv Detail & Related papers (2024-06-08T23:38:03Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - AI, Meet Human: Learning Paradigms for Hybrid Decision Making Systems [4.936180840622583]
Humans are now constantly interacting with machine learning-based systems, training and using models everyday.
Several different techniques in computer science literature account for the human interaction with machine learning systems, but their classification is sparse and the goals varied.
This survey proposes a taxonomy of Hybrid Decision Making Systems, providing both a conceptual and technical framework for understanding how current computer science literature models interaction between humans and machines.
arXiv Detail & Related papers (2024-02-09T09:54:01Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - A Roadmap to Domain Knowledge Integration in Machine Learning [21.96548398967003]
Integrating knowledge in a machine learning model can help to overcome these obstacles up to a certain degree.
We will give a brief overview of these different forms of knowledge integration and their performance in certain machine learning tasks.
arXiv Detail & Related papers (2022-12-12T05:35:44Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
Article argues that embodied intelligence is a key driver for the advancement of machine learning technology.
We highlight challenges and opportunities specific to embodied intelligence.
We propose research directions which may significantly advance the state-of-the-art in robot learning.
arXiv Detail & Related papers (2021-10-28T16:04:01Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - Neurosymbolic AI for Situated Language Understanding [13.249453757295083]
We argue that computational situated grounding provides a solution to some of these learning challenges.
Our model reincorporates some ideas of classic AI into a framework of neurosymbolic intelligence.
We discuss how situated grounding provides diverse data and multiple levels of modeling for a variety of AI learning challenges.
arXiv Detail & Related papers (2020-12-05T05:03:28Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.