Dual-Octave Convolution for Accelerated Parallel MR Image Reconstruction
- URL: http://arxiv.org/abs/2104.05345v1
- Date: Mon, 12 Apr 2021 10:51:05 GMT
- Title: Dual-Octave Convolution for Accelerated Parallel MR Image Reconstruction
- Authors: Chun-Mei Feng, Zhanyuan Yang, Geng Chen, Yong Xu, Ling Shao
- Abstract summary: We propose the Dual-Octave Convolution (Dual-OctConv), which is capable of learning multi-scale spatial-frequency features from both real and imaginary components.
By reformulating the complex operations using octave convolutions, our model shows a strong ability to capture richer representations of MR images.
- Score: 75.35200719645283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magnetic resonance (MR) image acquisition is an inherently prolonged process,
whose acceleration by obtaining multiple undersampled images simultaneously
through parallel imaging has always been the subject of research. In this
paper, we propose the Dual-Octave Convolution (Dual-OctConv), which is capable
of learning multi-scale spatial-frequency features from both real and imaginary
components, for fast parallel MR image reconstruction. By reformulating the
complex operations using octave convolutions, our model shows a strong ability
to capture richer representations of MR images, while at the same time greatly
reducing the spatial redundancy. More specifically, the input feature maps and
convolutional kernels are first split into two components (i.e., real and
imaginary), which are then divided into four groups according to their spatial
frequencies. Then, our Dual-OctConv conducts intra-group information updating
and inter-group information exchange to aggregate the contextual information
across different groups. Our framework provides two appealing benefits: (i) it
encourages interactions between real and imaginary components at various
spatial frequencies to achieve richer representational capacity, and (ii) it
enlarges the receptive field by learning multiple spatial-frequency features of
both the real and imaginary components. We evaluate the performance of the
proposed model on the acceleration of multi-coil MR image reconstruction.
Extensive experiments are conducted on an {in vivo} knee dataset under
different undersampling patterns and acceleration factors. The experimental
results demonstrate the superiority of our model in accelerated parallel MR
image reconstruction. Our code is available at:
github.com/chunmeifeng/Dual-OctConv.
Related papers
- Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
We develop the first attempt to integrate the Vision State Space Model (Mamba) for remote sensing image (RSI) super-resolution.
To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR.
Our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM)
arXiv Detail & Related papers (2024-05-08T11:09:24Z) - Global k-Space Interpolation for Dynamic MRI Reconstruction using Masked
Image Modeling [10.74920257710449]
In dynamic Magnetic Imaging (MRI), k-space is typically undersampled due to limited scan time.
We propose a novel Transformer-based k-space Global Interpolation Network, termed k-GIN.
Our k-GIN learns global dependencies among low- and high-frequency components of 2D+t k-space and uses it to interpolate unsampled data.
arXiv Detail & Related papers (2023-07-24T10:20:14Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
Partial scan is a common approach to accelerate Magnetic Resonance Imaging (MRI) data acquisition in both 2D and 3D settings.
We propose a novel convolutional operator called Faster Fourier Convolution (FasterFC) to replace the two consecutive convolution operations.
A 2D accelerated MRI method, FasterFC-End-to-End-VarNet, which uses FasterFC to improve the sensitivity maps and reconstruction quality.
A 3D accelerated MRI method called FasterFC-based Single-to-group Network (FAS-Net) that utilizes a single-to-group algorithm to guide k-space domain reconstruction
arXiv Detail & Related papers (2023-06-05T13:53:57Z) - JoJoNet: Joint-contrast and Joint-sampling-and-reconstruction Network
for Multi-contrast MRI [49.29851365978476]
The proposed framework consists of a sampling mask generator for each image contrast and a reconstructor exploiting the inter-contrast correlations with a recurrent structure.
The acceleration ratio of each image contrast is also learnable and can be driven by a downstream task performance.
arXiv Detail & Related papers (2022-10-22T20:46:56Z) - Orthonormal Convolutions for the Rotation Based Iterative
Gaussianization [64.44661342486434]
This paper elaborates an extension of rotation-based iterative Gaussianization, RBIG, which makes image Gaussianization possible.
In images its application has been restricted to small image patches or isolated pixels, because rotation in RBIG is based on principal or independent component analysis.
We present the emphConvolutional RBIG: an extension that alleviates this issue by imposing that the rotation in RBIG is a convolution.
arXiv Detail & Related papers (2022-06-08T12:56:34Z) - DONet: Dual-Octave Network for Fast MR Image Reconstruction [98.04121143761017]
The Dual-Octave Network (DONet) is capable of learning multi-scale spatial-frequency features from both the real and imaginary components of MR data.
Our framework provides three appealing benefits.
arXiv Detail & Related papers (2021-05-12T21:41:02Z) - Joint Frequency and Image Space Learning for MRI Reconstruction and
Analysis [7.821429746599738]
We show that neural network layers that explicitly combine frequency and image feature representations can be used as a versatile building block for reconstruction from frequency space data.
The proposed joint learning schemes enable both correction of artifacts native to the frequency space and manipulation of image space representations to reconstruct coherent image structures at every layer of the network.
arXiv Detail & Related papers (2020-07-02T23:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.