Neural basis expansion analysis with exogenous variables: Forecasting
electricity prices with NBEATSx
- URL: http://arxiv.org/abs/2104.05522v2
- Date: Tue, 13 Apr 2021 14:36:36 GMT
- Title: Neural basis expansion analysis with exogenous variables: Forecasting
electricity prices with NBEATSx
- Authors: Kin G. Olivares and Cristian Challu and Grzegorz Marcjasz and Rafa{\l}
Weron and Artur Dubrawski
- Abstract summary: We study the utility of the NBEATSx model in electricity price forecasting tasks across a broad range of years and markets.
We observe state-of-the-art performance, significantly improving the forecast accuracy by nearly 20% over the original NBEATS model.
The proposed neural network has an interpretable configuration that can structurally decompose time series.
- Score: 12.31979377566269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend the neural basis expansion analysis (NBEATS) to incorporate
exogenous factors. The resulting method, called NBEATSx, improves on a well
performing deep learning model, extending its capabilities by including
exogenous variables and allowing it to integrate multiple sources of useful
information. To showcase the utility of the NBEATSx model, we conduct a
comprehensive study of its application to electricity price forecasting (EPF)
tasks across a broad range of years and markets. We observe state-of-the-art
performance, significantly improving the forecast accuracy by nearly 20% over
the original NBEATS model, and by up to 5% over other well established
statistical and machine learning methods specialized for these tasks.
Additionally, the proposed neural network has an interpretable configuration
that can structurally decompose time series, visualizing the relative impact of
trend and seasonal components and revealing the modeled processes' interactions
with exogenous factors.
Related papers
- GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
We introduce a comprehensive data-driven framework aimed at enhancing the modeling of physical systems.
As a demonstrative application, we pursue the modeling of cathodic electrophoretic deposition (EPD), commonly known as e-coating.
arXiv Detail & Related papers (2024-01-16T14:58:21Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Deep learning models for price forecasting of financial time series: A
review of recent advancements: 2020-2022 [6.05458608266581]
Deep learning models are replacing traditional statistical and machine learning models for price forecasting tasks.
This review delves deeply into deep learning-based forecasting models, presenting information on model architectures, practical applications, and their respective advantages and disadvantages.
The present contribution also includes potential directions for future research, such as examining the effectiveness of deep learning models with complex structures for price forecasting.
arXiv Detail & Related papers (2023-04-21T03:46:09Z) - A comparative assessment of deep learning models for day-ahead load
forecasting: Investigating key accuracy drivers [2.572906392867547]
Short-term load forecasting (STLF) is vital for the effective and economic operation of power grids and energy markets.
Several deep learning models have been proposed in the literature for STLF, reporting promising results.
arXiv Detail & Related papers (2023-02-23T17:11:04Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - An Intelligent End-to-End Neural Architecture Search Framework for Electricity Forecasting Model Development [4.940941112226529]
We propose an intelligent automated architecture search (IAAS) framework for the development of time-series electricity forecasting models.
The proposed framework contains three primary components, i.e., network function-preserving transformation operation, reinforcement learning (RL)-based network transformation control, and network screening.
We demonstrate that the proposed IAAS framework significantly outperforms the ten existing models or methods in terms of forecasting accuracy and stability.
arXiv Detail & Related papers (2022-03-25T10:36:27Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Industrial Forecasting with Exponentially Smoothed Recurrent Neural
Networks [0.0]
We present a class of exponential smoothed recurrent neural networks (RNNs) which are well suited to modeling non-stationary dynamical systems arising in industrial applications.
Application of exponentially smoothed RNNs to forecasting electricity load, weather data, and stock prices highlight the efficacy of exponential smoothing of the hidden state for multi-step time series forecasting.
arXiv Detail & Related papers (2020-04-09T17:53:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.