論文の概要: Samanantar: The Largest Publicly Available Parallel Corpora Collection
for 11 Indic Languages
- arxiv url: http://arxiv.org/abs/2104.05596v4
- Date: Mon, 12 Jun 2023 18:23:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 19:01:42.913580
- Title: Samanantar: The Largest Publicly Available Parallel Corpora Collection
for 11 Indic Languages
- Title(参考訳): samanantar: 11のindic言語で利用可能な最大の並列コーパスコレクション
- Authors: Gowtham Ramesh, Sumanth Doddapaneni, Aravinth Bheemaraj, Mayank
Jobanputra, Raghavan AK, Ajitesh Sharma, Sujit Sahoo, Harshita Diddee,
Mahalakshmi J, Divyanshu Kakwani, Navneet Kumar, Aswin Pradeep, Srihari
Nagaraj, Kumar Deepak, Vivek Raghavan, Anoop Kunchukuttan, Pratyush Kumar,
Mitesh Shantadevi Khapra
- Abstract要約: Samanantarは、Indic言語で利用可能な最大の並列コーパスコレクションである。
このコレクションには、英語と11のIndic言語の間の合計4970万の文対が含まれている。
- 参考スコア(独自算出の注目度): 4.3857077920223295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Samanantar, the largest publicly available parallel corpora
collection for Indic languages. The collection contains a total of 49.7 million
sentence pairs between English and 11 Indic languages (from two language
families). Specifically, we compile 12.4 million sentence pairs from existing,
publicly-available parallel corpora, and additionally mine 37.4 million
sentence pairs from the web, resulting in a 4x increase. We mine the parallel
sentences from the web by combining many corpora, tools, and methods: (a)
web-crawled monolingual corpora, (b) document OCR for extracting sentences from
scanned documents, (c) multilingual representation models for aligning
sentences, and (d) approximate nearest neighbor search for searching in a large
collection of sentences. Human evaluation of samples from the newly mined
corpora validate the high quality of the parallel sentences across 11
languages. Further, we extract 83.4 million sentence pairs between all 55 Indic
language pairs from the English-centric parallel corpus using English as the
pivot language. We trained multilingual NMT models spanning all these languages
on Samanantar, which outperform existing models and baselines on publicly
available benchmarks, such as FLORES, establishing the utility of Samanantar.
Our data and models are available publicly at
https://ai4bharat.iitm.ac.in/samanantar and we hope they will help advance
research in NMT and multilingual NLP for Indic languages.
- Abstract(参考訳): 我々は,indic 言語で利用可能な最大規模の並列コーパスコレクションである samanantar を提案する。
このコレクションには英語と11の言語(2つの言語族から)の間で合計4970万の文対が含まれている。
具体的には、既存のパラレルコーパスから1240万の文対をコンパイルし、さらにWebから3740万の文対をマイニングし、4倍に増加した。
多くのコーパス、ツール、メソッドを組み合わせることで、webから並列文をマイニングします。
(a) web-crawled monolingual corpora
b)スキャンした文書から文章を抽出する文書OCR
(c)文の整列のための多言語表現モデル、及び
(d)大文の検索における近距離探索
新たに採掘したコーパスから採取したサンプルのヒトによる評価は,11言語にわたる並列文の高品質を検証した。
さらに、ピボット言語として英語を用いて、英語中心の並列コーパスから55個の言語対の8340万文対を抽出する。
Samanantarは既存のモデルとFLORESなどの公開ベンチマークのベースラインを上回り、Samanantarの有用性を確立します。
私たちのデータとモデルはhttps://ai4bharat.iitm.ac.in/samanantarで公開されています。
関連論文リスト
- IndicGenBench: A Multilingual Benchmark to Evaluate Generation Capabilities of LLMs on Indic Languages [12.514648269553104]
IndicGenBenchは、大規模言語モデル(LLM)を評価するための最大のベンチマークである。
言語間要約、機械翻訳、言語間質問応答などの多様な世代タスクで構成されている。
最大の PaLM-2 モデルは、ほとんどのタスクにおいて最高に機能するが、英語と比較して全ての言語で顕著な性能差がある。
論文 参考訳(メタデータ) (2024-04-25T17:57:36Z) - Aya Dataset: An Open-Access Collection for Multilingual Instruction
Tuning [49.79783940841352]
既存のデータセットはほとんどが英語で書かれている。
私たちは世界中の言語に精通した話者と協力して、指示と完了の自然な例を集めています。
既存のデータセットを114言語でテンプレート化し、翻訳することで、5億1300万のインスタンスを含む、これまでで最も広範な多言語コレクションを作成します。
論文 参考訳(メタデータ) (2024-02-09T18:51:49Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - IndicTrans2: Towards High-Quality and Accessible Machine Translation
Models for all 22 Scheduled Indian Languages [37.758476568195256]
インドは10億人以上の人々が話す4つの主要言語族の言語と共に豊かな言語風景を持っている。
これらの言語のうち22はインド憲法に記載されている(予定言語として参照)。
論文 参考訳(メタデータ) (2023-05-25T17:57:43Z) - Towards Leaving No Indic Language Behind: Building Monolingual Corpora,
Benchmark and Models for Indic Languages [19.91781398526369]
3つの重要な軸に沿ってコントリビューションを行うことで、Indic言語のNLU機能を改善することを目指している。
具体的には、4つの言語ファミリーの24言語をカバーする20.9Bトークンで、最大のモノリンガルコーパスであるIndicCorpをキュレートする。
我々は、20言語をカバーする9つの異なるNLUタスクからなる人間によるベンチマークIndicXTREMEを作成する。
言語やタスク全体にわたって、IndicXTREMEには合計105の評価セットが含まれており、そのうち52が新たな文献への貢献である。
論文 参考訳(メタデータ) (2022-12-11T04:45:50Z) - EAG: Extract and Generate Multi-way Aligned Corpus for Complete Multi-lingual Neural Machine Translation [63.88541605363555]
EAG(Extract and Generate)は,バイリンガルデータから大規模かつ高品質なマルチウェイアライメントコーパスを構築するための2段階のアプローチである。
まず、異なる言語対から、非常に類似したソースやターゲット文を持つバイリンガルな例をペアリングして、候補に整列した例を抽出する。
次に、よく訓練された生成モデルを用いて、候補から最終的な整列例を生成する。
論文 参考訳(メタデータ) (2022-03-04T08:21:27Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - A Multilingual Parallel Corpora Collection Effort for Indian Languages [43.62422999765863]
インドではヒンディー語、テルグ語、タミル語、マラヤラム語、グジャラート語、ウルドゥー語、ベンガル語、オリヤ語、マラティー語、パンジャービ語、英語の10言語に平行なコーパスを提示する。
コーパスは、言語間でコンテンツを共有するオンラインソースからコンパイルされる。
論文 参考訳(メタデータ) (2020-07-15T14:00:18Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z) - Knowledge Distillation for Multilingual Unsupervised Neural Machine
Translation [61.88012735215636]
unsupervised neural machine translation (UNMT) は、最近、いくつかの言語対に対して顕著な結果を得た。
UNMTは単一の言語ペア間でのみ翻訳することができ、同時に複数の言語ペアに対して翻訳結果を生成することはできない。
本稿では,1つのエンコーダと1つのデコーダを用いて13言語間を翻訳する簡単な手法を実証的に紹介する。
論文 参考訳(メタデータ) (2020-04-21T17:26:16Z) - PMIndia -- A Collection of Parallel Corpora of Languages of India [10.434922903332415]
インドの主要言語13言語と英語を組み合わせたパラレル文からなる新しい公開コーパス(PMIndia)について述べる。
コーパスには、各言語対について最大56000の文が含まれている。
本稿では,2つの異なる自動文アライメント手法の評価を含むコーパスの構築方法について解説し,初期NMTの結果をコーパスに提示する。
論文 参考訳(メタデータ) (2020-01-27T16:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。