Learning to Synthesize Data for Semantic Parsing
- URL: http://arxiv.org/abs/2104.05827v1
- Date: Mon, 12 Apr 2021 21:24:02 GMT
- Title: Learning to Synthesize Data for Semantic Parsing
- Authors: Bailin Wang, Wenpeng Yin, Xi Victoria Lin and Caiming Xiong
- Abstract summary: We propose a generative model which models the composition of programs and maps a program to an utterance.
Due to the simplicity of PCFG and pre-trained BART, our generative model can be efficiently learned from existing data at hand.
We evaluate our method in both in-domain and out-of-domain settings of text-to-Query parsing on the standard benchmarks of GeoQuery and Spider.
- Score: 57.190817162674875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthesizing data for semantic parsing has gained increasing attention
recently. However, most methods require handcrafted (high-precision) rules in
their generative process, hindering the exploration of diverse unseen data. In
this work, we propose a generative model which features a (non-neural) PCFG
that models the composition of programs (e.g., SQL), and a BART-based
translation model that maps a program to an utterance. Due to the simplicity of
PCFG and pre-trained BART, our generative model can be efficiently learned from
existing data at hand. Moreover, explicitly modeling compositions using PCFG
leads to a better exploration of unseen programs, thus generate more diverse
data. We evaluate our method in both in-domain and out-of-domain settings of
text-to-SQL parsing on the standard benchmarks of GeoQuery and Spider,
respectively. Our empirical results show that the synthesized data generated
from our model can substantially help a semantic parser achieve better
compositional and domain generalization.
Related papers
- Can Models Help Us Create Better Models? Evaluating LLMs as Data Scientists [41.94295877935867]
We present a benchmark for large language models designed to tackle one of the most knowledge-intensive tasks in data science.
We demonstrate that the FeatEng of our proposal can cheaply and efficiently assess the broad capabilities of LLMs.
arXiv Detail & Related papers (2024-10-30T17:59:01Z) - Faithful Low-Resource Data-to-Text Generation through Cycle Training [14.375070014155817]
Methods to generate text from structured data have advanced significantly in recent years.
Cycle training uses two models which are inverses of each other.
We show that cycle training achieves nearly the same performance as fully supervised approaches.
arXiv Detail & Related papers (2023-05-24T06:44:42Z) - Importance of Synthesizing High-quality Data for Text-to-SQL Parsing [71.02856634369174]
State-of-the-art text-to-weighted algorithms did not further improve on popular benchmarks when trained with augmented synthetic data.
We propose a novel framework that incorporates key relationships from schema, imposes strong typing, and schema-weighted column sampling.
arXiv Detail & Related papers (2022-12-17T02:53:21Z) - Multi-Scales Data Augmentation Approach In Natural Language Inference
For Artifacts Mitigation And Pre-Trained Model Optimization [0.0]
We provide a variety of techniques for analyzing and locating dataset artifacts inside the crowdsourced Stanford Natural Language Inference corpus.
To mitigate dataset artifacts, we employ a unique multi-scale data augmentation technique with two distinct frameworks.
Our combination method enhances our model's resistance to perturbation testing, enabling it to continuously outperform the pre-trained baseline.
arXiv Detail & Related papers (2022-12-16T23:37:44Z) - Comparing Computational Architectures for Automated Journalism [0.0]
This study compares the most often employed methods for generating Brazilian Portuguese texts from structured data.
Results suggest that explicit intermediate steps in the generation process produce better texts than the ones generated by neural end-to-end architectures.
arXiv Detail & Related papers (2022-10-08T21:20:52Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Learning Contextual Representations for Semantic Parsing with
Generation-Augmented Pre-Training [86.91380874390778]
We present Generation-Augmented Pre-training (GAP), that jointly learns representations of natural language utterances and table schemas by leveraging generation models to generate pre-train data.
Based on experimental results, neural semantics that leverage GAP MODEL obtain new state-of-the-art results on both SPIDER and CRITERIA-TO-generative benchmarks.
arXiv Detail & Related papers (2020-12-18T15:53:50Z) - Generating Synthetic Data for Task-Oriented Semantic Parsing with
Hierarchical Representations [0.8203855808943658]
In this work, we explore the possibility of generating synthetic data for neural semantic parsing.
Specifically, we first extract masked templates from the existing labeled utterances, and then fine-tune BART to generate synthetic utterances conditioning.
We show the potential of our approach when evaluating on the Facebook TOP dataset for navigation domain.
arXiv Detail & Related papers (2020-11-03T22:55:40Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.