The computational asymptotics of Gaussian variational inference and the
Laplace approximation
- URL: http://arxiv.org/abs/2104.05886v3
- Date: Wed, 5 Jul 2023 22:42:49 GMT
- Title: The computational asymptotics of Gaussian variational inference and the
Laplace approximation
- Authors: Zuheng Xu, Trevor Campbell
- Abstract summary: We provide a theoretical analysis of the convexity properties of variational inference with a Gaussian family.
We show that with scaled real-data examples both CSVI and CSV improve the likelihood of obtaining the global optimum of their respective optimization problems.
- Score: 19.366538729532856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian variational inference and the Laplace approximation are popular
alternatives to Markov chain Monte Carlo that formulate Bayesian posterior
inference as an optimization problem, enabling the use of simple and scalable
stochastic optimization algorithms. However, a key limitation of both methods
is that the solution to the optimization problem is typically not tractable to
compute; even in simple settings the problem is nonconvex. Thus, recently
developed statistical guarantees -- which all involve the (data) asymptotic
properties of the global optimum -- are not reliably obtained in practice. In
this work, we provide two major contributions: a theoretical analysis of the
asymptotic convexity properties of variational inference with a Gaussian family
and the maximum a posteriori (MAP) problem required by the Laplace
approximation; and two algorithms -- consistent Laplace approximation (CLA) and
consistent stochastic variational inference (CSVI) -- that exploit these
properties to find the optimal approximation in the asymptotic regime. Both CLA
and CSVI involve a tractable initialization procedure that finds the local
basin of the optimum, and CSVI further includes a scaled gradient descent
algorithm that provably stays locally confined to that basin. Experiments on
nonconvex synthetic and real-data examples show that compared with standard
variational and Laplace approximations, both CSVI and CLA improve the
likelihood of obtaining the global optimum of their respective optimization
problems.
Related papers
- Independently-Normalized SGD for Generalized-Smooth Nonconvex Optimization [19.000530691874516]
We show that many non machine learning problems meet that kind of condition that extends beyond traditional non-smoothepseps.
We propose an independently-normalized gradient descent algorithm, which leverages independent sampling and normalization.
arXiv Detail & Related papers (2024-10-17T21:52:00Z) - Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
We focus on high-dimensional and plausible settings in which the problem admits a low-rank solution.
We provide several theoretical results proving that, under these circumstances, the well-known Extragradient method converges to a solution of the constrained optimization problem.
arXiv Detail & Related papers (2024-02-14T10:48:00Z) - Accelerated stochastic approximation with state-dependent noise [7.4648480208501455]
We consider a class of smooth convex optimization problems under general assumptions on the quadratic noise in the gradient observation.
Such problems naturally arise in a variety of applications, in particular, in the well-known generalized linear regression problem in statistics.
We show that both SAGD and SGE, under appropriate conditions, achieve the optimal convergence rate.
arXiv Detail & Related papers (2023-07-04T06:06:10Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - A Fast and Convergent Proximal Algorithm for Regularized Nonconvex and
Nonsmooth Bi-level Optimization [26.68351521813062]
Existing bi-level algorithms cannot handle nonsmooth or hyper-smooth regularizers.
In this paper, we show that an implicit differentiation (AID) scheme can be used to speed up comprehensive machine learning applications.
arXiv Detail & Related papers (2022-03-30T18:53:04Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
We analyze a new family of adaptive subgradient methods for solving an important class of weakly convex (possibly nonsmooth) optimization problems.
Experimental results indicate how the proposed algorithms empirically outperform its zerothorder gradient descent and its design variant.
arXiv Detail & Related papers (2020-05-19T07:44:52Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.