Thief, Beware of What Get You There: Towards Understanding Model
Extraction Attack
- URL: http://arxiv.org/abs/2104.05921v1
- Date: Tue, 13 Apr 2021 03:46:59 GMT
- Title: Thief, Beware of What Get You There: Towards Understanding Model
Extraction Attack
- Authors: Xinyi Zhang, Chengfang Fang, Jie Shi
- Abstract summary: In some scenarios, AI models are trained proprietarily, where neither pre-trained models nor sufficient in-distribution data is publicly available.
We find the effectiveness of existing techniques significantly affected by the absence of pre-trained models.
We formulate model extraction attacks into an adaptive framework that captures these factors with deep reinforcement learning.
- Score: 13.28881502612207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model extraction increasingly attracts research attentions as keeping
commercial AI models private can retain a competitive advantage. In some
scenarios, AI models are trained proprietarily, where neither pre-trained
models nor sufficient in-distribution data is publicly available. Model
extraction attacks against these models are typically more devastating.
Therefore, in this paper, we empirically investigate the behaviors of model
extraction under such scenarios. We find the effectiveness of existing
techniques significantly affected by the absence of pre-trained models. In
addition, the impacts of the attacker's hyperparameters, e.g. model
architecture and optimizer, as well as the utilities of information retrieved
from queries, are counterintuitive. We provide some insights on explaining the
possible causes of these phenomena. With these observations, we formulate model
extraction attacks into an adaptive framework that captures these factors with
deep reinforcement learning. Experiments show that the proposed framework can
be used to improve existing techniques, and show that model extraction is still
possible in such strict scenarios. Our research can help system designers to
construct better defense strategies based on their scenarios.
Related papers
- Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) are used to test the robustness of trained neural networks by distorting input data.
We introduce a self-supervised, computationally economical method for generating adversarial examples.
Our experiments consistently demonstrate the method is effective across various models, unseen data categories, and even defended models.
arXiv Detail & Related papers (2023-10-05T17:34:47Z) - Introducing Foundation Models as Surrogate Models: Advancing Towards
More Practical Adversarial Attacks [15.882687207499373]
No-box adversarial attacks are becoming more practical and challenging for AI systems.
This paper recasts adversarial attack as a downstream task by introducing foundational models as surrogate models.
arXiv Detail & Related papers (2023-07-13T08:10:48Z) - AUTOLYCUS: Exploiting Explainable AI (XAI) for Model Extraction Attacks against Interpretable Models [1.8752655643513647]
XAI tools can increase the vulnerability of model extraction attacks, which is a concern when model owners prefer black-box access.
We propose a novel retraining (learning) based model extraction attack framework against interpretable models under black-box settings.
We show that AUTOLYCUS is highly effective, requiring significantly fewer queries compared to state-of-the-art attacks.
arXiv Detail & Related papers (2023-02-04T13:23:39Z) - Careful What You Wish For: on the Extraction of Adversarially Trained
Models [2.707154152696381]
Recent attacks on Machine Learning (ML) models pose several security and privacy threats.
We propose a framework to assess extraction attacks on adversarially trained models.
We show that adversarially trained models are more vulnerable to extraction attacks than models obtained under natural training circumstances.
arXiv Detail & Related papers (2022-07-21T16:04:37Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
Inference attacks against Machine Learning (ML) models allow adversaries to learn about training data, model parameters, etc.
We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing.
Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models.
arXiv Detail & Related papers (2021-02-04T11:35:13Z) - Model Extraction and Defenses on Generative Adversarial Networks [0.9442139459221782]
We study the feasibility of model extraction attacks against generative adversarial networks (GANs)
We propose effective defense techniques to safeguard GANs, considering a trade-off between the utility and security of GAN models.
arXiv Detail & Related papers (2021-01-06T14:36:21Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Model extraction from counterfactual explanations [68.8204255655161]
We show how an adversary can leverage the information provided by counterfactual explanations to build high-fidelity and high-accuracy model extraction attacks.
Our attack enables the adversary to build a faithful copy of a target model by accessing its counterfactual explanations.
arXiv Detail & Related papers (2020-09-03T19:02:55Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.