OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks
- URL: http://arxiv.org/abs/2310.03707v1
- Date: Thu, 5 Oct 2023 17:34:47 GMT
- Title: OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks
- Authors: Ofir Bar Tal, Adi Haviv, Amit H. Bermano
- Abstract summary: Evasion Attacks (EA) are used to test the robustness of trained neural networks by distorting input data.
We introduce a self-supervised, computationally economical method for generating adversarial examples.
Our experiments consistently demonstrate the method is effective across various models, unseen data categories, and even defended models.
- Score: 17.584752814352502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evasion Attacks (EA) are used to test the robustness of trained neural
networks by distorting input data to misguide the model into incorrect
classifications. Creating these attacks is a challenging task, especially with
the ever-increasing complexity of models and datasets. In this work, we
introduce a self-supervised, computationally economical method for generating
adversarial examples, designed for the unseen black-box setting. Adapting
techniques from representation learning, our method generates on-manifold EAs
that are encouraged to resemble the data distribution. These attacks are
comparable in effectiveness compared to the state-of-the-art when attacking the
model trained on, but are significantly more effective when attacking unseen
models, as the attacks are more related to the data rather than the model
itself. Our experiments consistently demonstrate the method is effective across
various models, unseen data categories, and even defended models, suggesting a
significant role for on-manifold EAs when targeting unseen models.
Related papers
- SCME: A Self-Contrastive Method for Data-free and Query-Limited Model
Extraction Attack [18.998300969035885]
Model extraction attacks fool the target model by generating adversarial examples on a substitute model.
We propose a novel data-free model extraction method named SCME, which considers both the inter- and intra-class diversity in synthesizing fake data.
arXiv Detail & Related papers (2023-10-15T10:41:45Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
We propose a new training paradigm for a learning-based model inversion attack that can achieve higher attack accuracy in a black-box setting.
First, we regularize the training process of the attack model with an added semantic loss function.
Second, we inject adversarial examples into the training data to increase the diversity of the class-related parts.
arXiv Detail & Related papers (2023-06-24T13:40:58Z) - Towards Generating Adversarial Examples on Mixed-type Data [32.41305735919529]
We propose a novel attack algorithm M-Attack, which can effectively generate adversarial examples in mixed-type data.
Based on M-Attack, attackers can attempt to mislead the targeted classification model's prediction, by only slightly perturbing both the numerical and categorical features in the given data samples.
Our generated adversarial examples can evade potential detection models, which makes the attack indeed insidious.
arXiv Detail & Related papers (2022-10-17T20:17:21Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
We propose a novel perspective substitute training that focuses on designing the distribution of data used in the knowledge stealing process.
The combination of these two modules can further boost the consistency of the substitute model and target model, which greatly improves the effectiveness of adversarial attack.
arXiv Detail & Related papers (2021-04-26T07:26:29Z) - Thief, Beware of What Get You There: Towards Understanding Model
Extraction Attack [13.28881502612207]
In some scenarios, AI models are trained proprietarily, where neither pre-trained models nor sufficient in-distribution data is publicly available.
We find the effectiveness of existing techniques significantly affected by the absence of pre-trained models.
We formulate model extraction attacks into an adaptive framework that captures these factors with deep reinforcement learning.
arXiv Detail & Related papers (2021-04-13T03:46:59Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
Adversarial attacking aims to fool deep neural networks with adversarial examples.
We propose a reinforcement learning based attack model, which can learn from attack history and launch attacks more efficiently.
arXiv Detail & Related papers (2020-09-19T09:12:24Z) - Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer
Learning [60.784641458579124]
We show that fine-tuning effectively enhances model robustness under white-box FGSM attacks.
We also propose a black-box attack method for transfer learning models which attacks the target model with the adversarial examples produced by its source model.
To systematically measure the effect of both white-box and black-box attacks, we propose a new metric to evaluate how transferable are the adversarial examples produced by a source model to a target model.
arXiv Detail & Related papers (2020-08-25T15:04:32Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z) - DaST: Data-free Substitute Training for Adversarial Attacks [55.76371274622313]
We propose a data-free substitute training method (DaST) to obtain substitute models for adversarial black-box attacks.
To achieve this, DaST utilizes specially designed generative adversarial networks (GANs) to train the substitute models.
Experiments demonstrate the substitute models can achieve competitive performance compared with the baseline models.
arXiv Detail & Related papers (2020-03-28T04:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.