論文の概要: First and Second Order Dynamics in a Hierarchical SOM system for Action
Recognition
- arxiv url: http://arxiv.org/abs/2104.06059v1
- Date: Tue, 13 Apr 2021 09:46:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-14 13:19:42.503484
- Title: First and Second Order Dynamics in a Hierarchical SOM system for Action
Recognition
- Title(参考訳): 行動認識のための階層型SOMシステムにおける第1および第2次ダイナミクス
- Authors: Zahra Gharaee and Peter G\"ardenfors and Magnus Johnsson
- Abstract要約: 本稿では,自己組織型マップの階層構造と,行動分類を学習する独自のニューラルネットワークを用いた行動認識システムを提案する。
システムはkinectのような3dカメラからの入力を前処理し、関節の位置だけでなく、第1および第2次ダイナミクスに関する情報を利用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Human recognition of the actions of other humans is very efficient and is
based on patterns of movements. Our theoretical starting point is that the
dynamics of the joint movements is important to action categorization. On the
basis of this theory, we present a novel action recognition system that employs
a hierarchy of Self-Organizing Maps together with a custom supervised neural
network that learns to categorize actions. The system preprocesses the input
from a Kinect like 3D camera to exploit the information not only about joint
positions, but also their first and second order dynamics. We evaluate our
system in two experiments with publicly available data sets, and compare its
performance to the performance with less sophisticated preprocessing of the
input. The results show that including the dynamics of the actions improves the
performance. We also apply an attention mechanism that focuses on the parts of
the body that are the most involved in performing the actions.
- Abstract(参考訳): 他の人間の行動に対する人間の認識は非常に効率的であり、行動パターンに基づいている。
我々の理論的出発点は、関節運動のダイナミクスが行動分類にとって重要であることである。
この理論に基づいて,行動分類を学習する独自の教師付きニューラルネットワークとともに,自己組織化マップの階層構造を用いた新しい行動認識システムを提案する。
システムはkinectのような3dカメラからの入力を前処理し、関節の位置だけでなく、第1および第2次ダイナミクスに関する情報を利用する。
我々は,公開データセットを用いた2つの実験でシステムを評価し,その性能をより洗練されていない入力前処理と比較した。
その結果,動作のダイナミクスを含むと性能が向上することがわかった。
また、アクションの実行に最も関与している身体の一部に焦点を当てた注意機構も適用します。
関連論文リスト
- Intrinsic Motivation in Dynamical Control Systems [5.635628182420597]
エージェントのエンパワーメントの最大化に基づく本質的なモチベーションに対する情報理論的アプローチについて検討する。
このアプローチは、本質的なモチベーションを形式化する以前の試みを一般化することを示す。
これにより、実用的な人工的な本質的なモチベーションを持つコントローラーを設計するための扉が開く。
論文 参考訳(メタデータ) (2022-12-29T05:20:08Z) - Learning Action-Effect Dynamics for Hypothetical Vision-Language
Reasoning Task [50.72283841720014]
本研究では,行動の効果に関する推論を改善する新しい学習戦略を提案する。
本稿では,提案手法の有効性を実証し,性能,データ効率,一般化能力の観点から,従来のベースラインに対する優位性を論じる。
論文 参考訳(メタデータ) (2022-12-07T05:41:58Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
本稿では,CD-JBF-GCNをエンコーダとし,ポーズ予測ヘッドをデコーダとして使用する新しい相関駆動型ジョイントボーン・フュージョングラフ畳み込みネットワークを提案する。
具体的には、CD-JBF-GCは、関節ストリームと骨ストリームの間の運動伝達を探索することができる。
自己教師型トレーニング段階におけるポーズ予測に基づくオートエンコーダにより、未ラベルデータから動作表現を学習することができる。
論文 参考訳(メタデータ) (2022-02-08T16:03:15Z) - Skeleton-Based Mutually Assisted Interacted Object Localization and
Human Action Recognition [111.87412719773889]
本研究では,骨格データに基づく「相互作用対象の局所化」と「人間の行動認識」のための共同学習フレームワークを提案する。
本手法は,人間の行動認識のための最先端の手法を用いて,最高の,あるいは競争的な性能を実現する。
論文 参考訳(メタデータ) (2021-10-28T10:09:34Z) - Human Activity Recognition using Attribute-Based Neural Networks and
Context Information [61.67246055629366]
手作業におけるウェアラブルセンサデータから人間の活動認識(HAR)を考察する。
我々は、コンテキスト情報をディープニューラルネットワークベースのHARシステムに体系的に組み込む方法を示す。
提案したアーキテクチャは,最先端手法と比較してHAR性能が向上することを示す。
論文 参考訳(メタデータ) (2021-10-28T06:08:25Z) - Action in Mind: A Neural Network Approach to Action Recognition and
Segmentation [0.0]
本稿では,ニューラルネットワークに基づく多層アーキテクチャの異なる実装によるヒューマンアクション認識のための新しい計算手法を提案する。
提案する行動認識アーキテクチャは,前処理層,順序ベクトル表現層,ニューラルネットワークの3層を含む複数の処理層から構成される。
開発の各段階において、システムは連続する3d体姿勢からなる入力データで訓練され、システムがこれまで経験したことのない一般的な入力データでテストされる。
論文 参考訳(メタデータ) (2021-04-30T09:53:28Z) - Self-supervised Video Object Segmentation by Motion Grouping [79.13206959575228]
動きの手がかりを利用して物体をセグメンテーションできるコンピュータビジョンシステムを開発した。
本稿では,光フローフレームを一次オブジェクトと背景に分割するトランスフォーマーの簡単なバリエーションを紹介する。
提案したアーキテクチャを公開ベンチマーク(DAVIS2016, SegTrackv2, FBMS59)で評価する。
論文 参考訳(メタデータ) (2021-04-15T17:59:32Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - Attention-Oriented Action Recognition for Real-Time Human-Robot
Interaction [11.285529781751984]
本稿では,リアルタイムインタラクションの必要性に応えるために,アテンション指向のマルチレベルネットワークフレームワークを提案する。
具体的には、プレアテンションネットワークを使用して、低解像度でシーン内のインタラクションに大まかにフォーカスする。
他のコンパクトCNNは、抽出されたスケルトンシーケンスをアクション認識用の入力として受信する。
論文 参考訳(メタデータ) (2020-07-02T12:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。