Aliasing is your Ally: End-to-End Super-Resolution from Raw Image Bursts
- URL: http://arxiv.org/abs/2104.06191v1
- Date: Tue, 13 Apr 2021 13:39:43 GMT
- Title: Aliasing is your Ally: End-to-End Super-Resolution from Raw Image Bursts
- Authors: Bruno Lecouat, Jean Ponce, Julien Mairal
- Abstract summary: This presentation addresses the problem of reconstructing a high-resolution image from multiple lower-resolution snapshots captured from slightly different viewpoints in space and time.
Key challenges for solving this problem include (i) aligning the input pictures with sub-pixel accuracy, (ii) handling raw (noisy) images for maximal faithfulness to native camera data, and (iii) designing/learning an image prior (regularizer) well suited to the task.
- Score: 70.80220990106467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This presentation addresses the problem of reconstructing a high-resolution
image from multiple lower-resolution snapshots captured from slightly different
viewpoints in space and time. Key challenges for solving this problem include
(i) aligning the input pictures with sub-pixel accuracy, (ii) handling raw
(noisy) images for maximal faithfulness to native camera data, and (iii)
designing/learning an image prior (regularizer) well suited to the task. We
address these three challenges with a hybrid algorithm building on the insight
from Wronski et al. that aliasing is an ally in this setting, with parameters
that can be learned end to end, while retaining the interpretability of
classical approaches to inverse problems. The effectiveness of our approach is
demonstrated on synthetic and real image bursts, setting a new state of the art
on several benchmarks and delivering excellent qualitative results on real raw
bursts captured by smartphones and prosumer cameras.
Related papers
- Multi-Feature Aggregation in Diffusion Models for Enhanced Face Super-Resolution [6.055006354743854]
We develop an algorithm that utilize a low-resolution image combined with features extracted from multiple low-quality images to generate a super-resolved image.
Unlike other algorithms, our approach recovers facial features without explicitly providing attribute information.
This is the first time multi-features combined with low-resolution images are used as conditioners to generate more reliable super-resolution images.
arXiv Detail & Related papers (2024-08-27T20:08:33Z) - SpikeReveal: Unlocking Temporal Sequences from Real Blurry Inputs with Spike Streams [44.02794438687478]
Spike cameras have proven effective in capturing motion features and beneficial for solving this ill-posed problem.
Existing methods fall into the supervised learning paradigm, which suffers from notable performance degradation when applied to real-world scenarios.
We propose the first self-supervised framework for the task of spike-guided motion deblurring.
arXiv Detail & Related papers (2024-03-14T15:29:09Z) - Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
We propose to utilize exposure bracketing photography to unify image restoration and enhancement tasks.
Due to the difficulty in collecting real-world pairs, we suggest a solution that first pre-trains the model with synthetic paired data.
In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed.
arXiv Detail & Related papers (2024-01-01T14:14:35Z) - Fine Dense Alignment of Image Bursts through Camera Pose and Depth
Estimation [45.11207941777178]
This paper introduces a novel approach to the fine alignment of images in a burst captured by a handheld camera.
The proposed algorithm establishes dense correspondences by optimizing both the camera motion and surface depth and orientation at every pixel.
arXiv Detail & Related papers (2023-12-08T17:22:04Z) - Gated Multi-Resolution Transfer Network for Burst Restoration and
Enhancement [75.25451566988565]
We propose a novel Gated Multi-Resolution Transfer Network (GMTNet) to reconstruct a spatially precise high-quality image from a burst of low-quality raw images.
Detailed experimental analysis on five datasets validates our approach and sets a state-of-the-art for burst super-resolution, burst denoising, and low-light burst enhancement.
arXiv Detail & Related papers (2023-04-13T17:54:00Z) - SPARF: Neural Radiance Fields from Sparse and Noisy Poses [58.528358231885846]
We introduce Sparse Pose Adjusting Radiance Field (SPARF) to address the challenge of novel-view synthesis.
Our approach exploits multi-view geometry constraints in order to jointly learn the NeRF and refine the camera poses.
arXiv Detail & Related papers (2022-11-21T18:57:47Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
This paper introduces the first approach to reconstruct high-resolution, high-dynamic range color images from raw photographic bursts captured by a handheld camera with exposure bracketing.
The proposed algorithm is fast, with low memory requirements compared to state-of-the-art learning-based approaches to image restoration.
Experiments demonstrate its excellent performance with super-resolution factors of up to $times 4$ on real photographs taken in the wild with hand-held cameras.
arXiv Detail & Related papers (2022-07-29T13:31:28Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
We propose a dual-branch convolutional neural network to extract base features and recovered features separately.
By decomposing the feature extraction step into two task-independent streams, the dual-branch model can facilitate the training process.
arXiv Detail & Related papers (2020-03-02T13:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.