Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks
- URL: http://arxiv.org/abs/2401.00766v4
- Date: Fri, 31 May 2024 14:29:13 GMT
- Title: Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks
- Authors: Zhilu Zhang, Shuohao Zhang, Renlong Wu, Zifei Yan, Wangmeng Zuo,
- Abstract summary: We propose to utilize exposure bracketing photography to unify image restoration and enhancement tasks.
Due to the difficulty in collecting real-world pairs, we suggest a solution that first pre-trains the model with synthetic paired data.
In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed.
- Score: 50.822601495422916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is highly desired but challenging to acquire high-quality photos with clear content in low-light environments. Although multi-image processing methods (using burst, dual-exposure, or multi-exposure images) have made significant progress in addressing this issue, they typically focus on specific restoration or enhancement problems, and do not fully explore the potential of utilizing multiple images. Motivated by the fact that multi-exposure images are complementary in denoising, deblurring, high dynamic range imaging, and super-resolution, we propose to utilize exposure bracketing photography to unify image restoration and enhancement tasks in this work. Due to the difficulty in collecting real-world pairs, we suggest a solution that first pre-trains the model with synthetic paired data and then adapts it to real-world unlabeled images. In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed. Moreover, we construct a data simulation pipeline to synthesize pairs and collect real-world images from 200 nighttime scenarios. Experiments on both datasets show that our method performs favorably against the state-of-the-art multi-image processing ones. The dataset, code, and pre-trained models are available at https://github.com/cszhilu1998/BracketIRE.
Related papers
- DiffHarmony: Latent Diffusion Model Meets Image Harmonization [11.500358677234939]
Diffusion models have promoted the rapid development of image-to-image translation tasks.
Fine-tuning pre-trained latent diffusion models from scratch is computationally intensive.
In this paper, we adapt a pre-trained latent diffusion model to the image harmonization task to generate harmonious but potentially blurry initial images.
arXiv Detail & Related papers (2024-04-09T09:05:23Z) - Tell Me What You See: Text-Guided Real-World Image Denoising [31.43307762723943]
We show that adding image caption information significantly improves image denoising and reconstruction on both synthetic and real-world images.
We suggest as an alternative to add a description of the scene as prior, which can be easily done by the photographer capturing the scene.
arXiv Detail & Related papers (2023-12-15T20:35:07Z) - DiffuseRAW: End-to-End Generative RAW Image Processing for Low-Light Images [5.439020425819001]
We develop a new generative ISP that relies on fine-tuning latent diffusion models on RAW images.
We evaluate our approach on popular end-to-end low-light datasets for which we see promising results.
arXiv Detail & Related papers (2023-12-13T03:39:05Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
Multi-exposure image fusion (MEF) has emerged as a prominent solution to address the limitations of digital imaging in representing varied exposure levels.
This paper presents a Hybrid-Supervised Dual-Search approach for MEF, dubbed HSDS-MEF, which introduces a bi-level optimization search scheme for automatic design of both network structures and loss functions.
arXiv Detail & Related papers (2023-09-03T08:07:26Z) - Gated Multi-Resolution Transfer Network for Burst Restoration and
Enhancement [75.25451566988565]
We propose a novel Gated Multi-Resolution Transfer Network (GMTNet) to reconstruct a spatially precise high-quality image from a burst of low-quality raw images.
Detailed experimental analysis on five datasets validates our approach and sets a state-of-the-art for burst super-resolution, burst denoising, and low-light burst enhancement.
arXiv Detail & Related papers (2023-04-13T17:54:00Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
We propose a new low-light image enhancement dataset consisting of misaligned training images with real-world corruptions.
Our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets.
arXiv Detail & Related papers (2022-01-10T03:12:52Z) - Enhance Images as You Like with Unpaired Learning [8.104571453311442]
We propose a lightweight one-path conditional generative adversarial network (cGAN) to learn a one-to-many relation from low-light to normal-light image space.
Our network learns to generate a collection of enhanced images from a given input conditioned on various reference images.
Our model achieves competitive visual and quantitative results on par with fully supervised methods on both noisy and clean datasets.
arXiv Detail & Related papers (2021-10-04T03:00:44Z) - Bridging Composite and Real: Towards End-to-end Deep Image Matting [88.79857806542006]
We study the roles of semantics and details for image matting.
We propose a novel Glance and Focus Matting network (GFM), which employs a shared encoder and two separate decoders.
Comprehensive empirical studies have demonstrated that GFM outperforms state-of-the-art methods.
arXiv Detail & Related papers (2020-10-30T10:57:13Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.