論文の概要: SetConv: A New Approach for Learning from Imbalanced Data
- arxiv url: http://arxiv.org/abs/2104.06313v1
- Date: Sat, 3 Apr 2021 22:33:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 10:47:18.272787
- Title: SetConv: A New Approach for Learning from Imbalanced Data
- Title(参考訳): SetConv: 不均衡データから学ぶための新しいアプローチ
- Authors: Yang Gao, Yi-Fan Li, Yu Lin, Charu Aggarwal, Latifur Khan
- Abstract要約: 集合畳み込み操作とエピソード学習戦略を提案し,各クラスに1つの代表を抽出する。
提案アルゴリズムは入力順序に関わらず置換不変であることを示す。
- 参考スコア(独自算出の注目度): 29.366843553056594
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: For many real-world classification problems, e.g., sentiment classification,
most existing machine learning methods are biased towards the majority class
when the Imbalance Ratio (IR) is high. To address this problem, we propose a
set convolution (SetConv) operation and an episodic training strategy to
extract a single representative for each class, so that classifiers can later
be trained on a balanced class distribution. We prove that our proposed
algorithm is permutation-invariant despite the order of inputs, and experiments
on multiple large-scale benchmark text datasets show the superiority of our
proposed framework when compared to other SOTA methods.
- Abstract(参考訳): 感情分類などの現実世界の多くの分類問題に対して、既存の機械学習手法は、Im Balance Ratio (IR) が高い場合、多数派に偏っている。
この問題に対処するために,各クラスの単一代表を抽出する集合畳み込み(SetConv)演算とエピソディックトレーニング戦略を提案する。
提案アルゴリズムは入力順序にかかわらず置換不変であることが証明され,複数の大規模ベンチマークテキストデータセットを用いた実験により,他のSOTA手法と比較して,提案手法の優位性を示した。
関連論文リスト
- Methods for Class-Imbalanced Learning with Support Vector Machines: A Review and an Empirical Evaluation [22.12895887111828]
クラス不均衡学習に関して,SVMに基づくモデルの階層的分類を導入する。
ベンチマーク不均衡データセットを用いて,各カテゴリの各種SVMモデルの性能を比較した。
以上の結果から,データ前処理の要求がないため,アルゴリズム手法は時間がかかりにくいが,再サンプリング手法とアルゴリズム手法を併用した融合方式は,一般に最善を尽くしていることがわかった。
論文 参考訳(メタデータ) (2024-06-05T15:55:08Z) - Mutual Exclusive Modulator for Long-Tailed Recognition [12.706961256329572]
ロングテール認識は、カテゴリー間で極めて不均衡なトレーニングサンプルを与えられた高性能分類器を学習するタスクである。
各グループに属する画像の確率を推定できる相互排他変調器を導入する。
提案手法は,最先端のベンチマークと比較すると,競争性能が向上する。
論文 参考訳(メタデータ) (2023-02-19T07:31:49Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
メトリクスのコーパスは、長い尾の分布で学習するアルゴリズムの正確性、堅牢性、およびバウンダリを測定するために設計されている。
ベンチマークに基づいて,CIFAR10およびCIFAR100データセット上での既存手法の性能を再評価する。
論文 参考訳(メタデータ) (2023-02-03T02:40:54Z) - Ensemble Classifier Design Tuned to Dataset Characteristics for Network
Intrusion Detection [0.0]
データセットのクラスオーバーラップ問題に対処する2つの新しいアルゴリズムが提案されている。
提案手法は二進分類と多進分類の両方で評価される。
論文 参考訳(メタデータ) (2022-05-08T21:06:42Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
CIL(Class-incremental Learning)は、少数のクラス(ベースクラス)から始まる設定で広く研究されている。
我々は、多数のベースクラスで事前訓練された強力なモデルから始まるCILの実証済み実世界の設定について検討する。
提案手法は、解析されたCIL設定すべてに頑健で一般化されている。
論文 参考訳(メタデータ) (2022-04-07T17:58:07Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Hybrid Ensemble optimized algorithm based on Genetic Programming for
imbalanced data classification [0.0]
本稿では,2種類の不均衡データ分類のための遺伝的プログラミング(GP)に基づくハイブリッドアンサンブルアルゴリズムを提案する。
実験結果から,提案手法をトレーニングセットのサイズで指定したデータセット上での性能は,マイノリティクラス予測の他の次元よりも40%,50%高い精度を示した。
論文 参考訳(メタデータ) (2021-06-02T14:14:38Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
ほとんどの実世界のシナリオでは、ラベル付きトレーニングデータセットは非常にクラス不均衡であり、ディープニューラルネットワークは、バランスの取れたテスト基準への一般化に苦しむ。
本稿では,より頻度の低いクラスを,より頻度の低いクラスからのサンプルを翻訳することによって,この問題を緩和する新しい方法を提案する。
提案手法は,従来の再サンプリング法や再重み付け法と比較して,マイノリティクラスの一般化を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-04-01T13:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。