Simultaneous Face Hallucination and Translation for Thermal to Visible
Face Verification using Axial-GAN
- URL: http://arxiv.org/abs/2104.06534v1
- Date: Tue, 13 Apr 2021 22:34:28 GMT
- Title: Simultaneous Face Hallucination and Translation for Thermal to Visible
Face Verification using Axial-GAN
- Authors: Rakhil Immidisetti, Shuowen Hu, Vishal M. Patel
- Abstract summary: We introduce the task of thermal-to-visible face verification from low-resolution thermal images.
We propose Axial-Generative Adversarial Network (Axial-GAN) to synthesize high-resolution visible images for matching.
- Score: 74.22129648654783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing thermal-to-visible face verification approaches expect the thermal
and visible face images to be of similar resolution. This is unlikely in
real-world long-range surveillance systems, since humans are distant from the
cameras. To address this issue, we introduce the task of thermal-to-visible
face verification from low-resolution thermal images. Furthermore, we propose
Axial-Generative Adversarial Network (Axial-GAN) to synthesize high-resolution
visible images for matching. In the proposed approach we augment the GAN
framework with axial-attention layers which leverage the recent advances in
transformers for modelling long-range dependencies. We demonstrate the
effectiveness of the proposed method by evaluating on two different
thermal-visible face datasets. When compared to related state-of-the-art works,
our results show significant improvements in both image quality and face
verification performance, and are also much more efficient.
Related papers
- Learning Domain and Pose Invariance for Thermal-to-Visible Face
Recognition [6.454199265634863]
We propose a novel Domain and Pose Invariant Framework that simultaneously learns domain and pose invariant representations.
Our proposed framework is composed of modified networks for extracting the most correlated intermediate representations from off-pose thermal and frontal visible face imagery.
Although DPIF focuses on learning to match off-pose thermal to frontal visible faces, we also show that DPIF enhances performance when matching frontal thermal face images to frontal visible face images.
arXiv Detail & Related papers (2022-11-17T05:24:02Z) - Thermal to Visible Image Synthesis under Atmospheric Turbulence [67.99407460140263]
In biometrics and surveillance, thermal imagining modalities are often used to capture images in low-light and nighttime conditions.
Such imaging systems often suffer from atmospheric turbulence, which introduces severe blur and deformation artifacts to the captured images.
An end-to-end reconstruction method is proposed which can directly transform thermal images into visible-spectrum images.
arXiv Detail & Related papers (2022-04-06T19:47:41Z) - A Synthesis-Based Approach for Thermal-to-Visible Face Verification [105.63410428506536]
This paper presents an algorithm that achieves state-of-the-art performance on the ARL-VTF and TUFTS multi-spectral face datasets.
We also present MILAB-VTF(B), a challenging multi-spectral face dataset composed of paired thermal and visible videos.
arXiv Detail & Related papers (2021-08-21T17:59:56Z) - Heterogeneous Face Frontalization via Domain Agnostic Learning [74.86585699909459]
We propose a domain agnostic learning-based generative adversarial network (DAL-GAN) which can synthesize frontal views in the visible domain from thermal faces with pose variations.
DAL-GAN consists of a generator with an auxiliary classifier and two discriminators which capture both local and global texture discriminations for better synthesis.
arXiv Detail & Related papers (2021-07-17T20:41:41Z) - A Large-Scale, Time-Synchronized Visible and Thermal Face Dataset [62.193924313292875]
We present the DEVCOM Army Research Laboratory Visible-Thermal Face dataset (ARL-VTF)
With over 500,000 images from 395 subjects, the ARL-VTF dataset represents to the best of our knowledge, the largest collection of paired visible and thermal face images to date.
This paper presents benchmark results and analysis on thermal face landmark detection and thermal-to-visible face verification by evaluating state-of-the-art models on the ARL-VTF dataset.
arXiv Detail & Related papers (2021-01-07T17:17:12Z) - Multi-Metric Evaluation of Thermal-to-Visual Face Recognition [3.0255457622022486]
We aim to address the problem of heterogeneous or cross-spectral face recognition using machine learning to synthesize visual spectrum face from infrared images.
We explore the ability to use Geneversarative Adrial Networks (GANs) for face image synthesis, and examine the performance of these images using pre-trained Convolutional Neural Networks (CNNs)
The features extracted using CNNs are applied in face identification and verification.
arXiv Detail & Related papers (2020-07-22T10:18:34Z) - Multi-Scale Thermal to Visible Face Verification via Attribute Guided
Synthesis [55.29770222566124]
We use attributes extracted from visible images to synthesize attribute-preserved visible images from thermal imagery for cross-modal matching.
A novel multi-scale generator is proposed to synthesize the visible image from the thermal image guided by the extracted attributes.
A pre-trained VGG-Face network is leveraged to extract features from the synthesized image and the input visible image for verification.
arXiv Detail & Related papers (2020-04-20T01:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.