論文の概要: Audio feature ranking for sound-based COVID-19 patient detection
- arxiv url: http://arxiv.org/abs/2104.07128v1
- Date: Wed, 14 Apr 2021 21:06:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 07:47:05.169253
- Title: Audio feature ranking for sound-based COVID-19 patient detection
- Title(参考訳): 音声によるCOVID-19患者検出のための音声機能ランキング
- Authors: Julia A. Meister and Khuong An Nguyen and Zhiyuan Luo
- Abstract要約: COVID-19は、低コストで非侵襲的でアクセス可能なオーディオ分類方法として登場しました。
重要な医療設定の厳格な信頼性と精度要件のため、公式使用の申請は承認されていません。
我々は、あまり知られていないものを含む15のオーディオ機能の調査とランキングを行った。
結果は2つの独立したCOVID-19サウンドデータセットで検証された。
- 参考スコア(独自算出の注目度): 1.7188280334580195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Audio classification using breath and cough samples has recently emerged as a
low-cost, non-invasive, and accessible COVID-19 screening method. However, no
application has been approved for official use at the time of writing due to
the stringent reliability and accuracy requirements of the critical healthcare
setting. To support the development of the Machine Learning classification
models, we performed an extensive comparative investigation and ranking of 15
audio features, including less well-known ones. The results were verified on
two independent COVID-19 sound datasets. By using the identified top-performing
features, we have increased the COVID-19 classification accuracy by up to 17%
on the Cambridge dataset, and up to 10% on the Coswara dataset, compared to the
original baseline accuracy without our feature ranking.
- Abstract(参考訳): 息のサンプルを用いた音声分類は、最近、低コストで非侵襲的でアクセス可能な新型コロナウイルススクリーニング方法として登場した。
しかし、重要な医療環境の厳格な信頼性と精度の要求のため、執筆時点では公式使用の申請は認められていない。
機械学習の分類モデルの開発を支援するため、あまり知られていないものを含む15の音声特徴の広範な比較調査とランキングを行った。
結果は、2つの独立したCOVID-19サウンドデータセットで検証された。
特定されたトップパフォーマンス機能を使用することで、私たちは、Cambridgeデータセットで最大17%、Cosawaraデータセットで最大10%、COVID-19の分類精度を、私たちの特徴ランキングなしでオリジナルのベースライン精度と比較して向上させました。
関連論文リスト
- Wav2vec-based Detection and Severity Level Classification of Dysarthria
from Speech [15.150153248025543]
事前訓練したwav2vec 2.0モデルは, 検出および重度分類システムを構築するための特徴抽出器として研究されている。
一般的なUA音声データベースを用いて実験を行った。
論文 参考訳(メタデータ) (2023-09-25T13:00:33Z) - Developing a multi-variate prediction model for the detection of
COVID-19 from Crowd-sourced Respiratory Voice Data [0.0]
この研究の新規性は、音声記録から新型コロナウイルス患者を識別するためのディープラーニングモデルの開発である。
私たちは、新型コロナウイルスのサウンドアプリを使った4352人の参加者からクラウドソースされた、853のオーディオサンプルからなるケンブリッジ大学のデータセットを使用しました。
音声データに基づいて,陽性症例を検出する深層学習分類モデルを開発した。
論文 参考訳(メタデータ) (2022-09-08T11:46:37Z) - Deep Feature Learning for Medical Acoustics [78.56998585396421]
本研究の目的は,医療音響の課題における学習内容の比較である。
ヒトの呼吸音と心臓の鼓動を健康的または病態の影響の2つのカテゴリに分類する枠組みが実装されている。
論文 参考訳(メタデータ) (2022-08-05T10:39:37Z) - Low-complexity deep learning frameworks for acoustic scene
classification [64.22762153453175]
音響シーン分類(ASC)のための低複雑さ深層学習フレームワークを提案する。
提案するフレームワークは、フロントエンドのスペクトログラム抽出、オンラインデータ拡張、バックエンドの分類、予測される確率の後期融合の4つの主要なステップに分けることができる。
DCASE 2022 Task 1 Development データセットで実施した実験は,低複雑さの要求を十分に満たし,最も高い分類精度を 60.1% で達成した。
論文 参考訳(メタデータ) (2022-06-13T11:41:39Z) - On the pragmatism of using binary classifiers over data intensive neural
network classifiers for detection of COVID-19 from voice [34.553128768223615]
音声からCOVID-19を検出するには、カスタムメイドの非標準機能や複雑なニューラルネットワーク分類器を必要としない。
臨床現場で収集・校正された人為的なデータセットからこれを実証する。
論文 参考訳(メタデータ) (2022-04-11T00:19:14Z) - Project Achoo: A Practical Model and Application for COVID-19 Detection
from Recordings of Breath, Voice, and Cough [55.45063681652457]
コンシューマー端末で録音した音声を用いて、新型コロナウイルスを迅速にトリアージする機械学習手法を提案する。
この手法は,信号処理手法と微調整深層学習ネットワークを組み合わせることで,信号の識別,コークス検出,分類を行う手法を提供する。
我々はまた、症状チェッカーと音声、息、うず信号を使って新型コロナウイルスの感染を検知するモバイルアプリケーションを開発し、展開した。
論文 参考訳(メタデータ) (2021-07-12T08:07:56Z) - Uncertainty-Aware COVID-19 Detection from Imbalanced Sound Data [15.833328435820622]
音声ベースのCOVID-19検出のための複数のディープラーニングモデルを開発するアンサンブルフレームワークを提案する。
誤った予測はしばしば高い不確実性をもたらすことが示されている。
この研究は、より堅牢なサウンドベースのcovid-19自動スクリーニングシステムへの道を開くものだ。
論文 参考訳(メタデータ) (2021-04-05T16:54:03Z) - Virufy: A Multi-Branch Deep Learning Network for Automated Detection of
COVID-19 [1.9899603776429056]
研究者は、臨床設定で記録された音声サンプルを使用して新型コロナウイルス感染状態を検出するモデルを提示しました。
そこで本研究では,クラウドソースデータを用いて,手作業によるデータ処理やクリーン化を行わないマルチブランチ深層学習ネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-02T15:31:09Z) - End-2-End COVID-19 Detection from Breath & Cough Audio [68.41471917650571]
クラウドソースのオーディオサンプルからエンドツーエンドのディープラーニングを使用してCOVID-19を診断する最初の試みを実証します。
本研究では, 人工深層ニューラルネットワークを用いて, 人工呼吸器から新型コロナを診断する新しいモデル戦略を提案する。
論文 参考訳(メタデータ) (2021-01-07T01:13:00Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
私たちは、Convolutional Neural Networksのアンサンブルを適応させて、スピーカーがCOVID-19に感染しているかどうかを分類します。
最終的には、74.9%のUnweighted Average Recall(UAR)、またはニューラルネットワークをアンサンブルすることで、ROC曲線(AUC)の80.7%を達成する。
論文 参考訳(メタデータ) (2020-12-29T01:14:17Z) - Classification supporting COVID-19 diagnostics based on patient survey
data [82.41449972618423]
新型コロナウイルス患者の効果的なスクリーニングを可能にするロジスティック回帰とXGBoost分類器が作成された。
得られた分類モデルは、DECODEサービス(decode.polsl.pl)の基礎を提供し、COVID-19病患者のスクリーニング支援に役立てることができる。
このデータセットは、3,000以上のサンプルで構成されており、ポーランドの病院で収集されたアンケートに基づいている。
論文 参考訳(メタデータ) (2020-11-24T17:44:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。