論文の概要: Weakly Supervised Video Anomaly Detection via Center-guided
Discriminative Learning
- arxiv url: http://arxiv.org/abs/2104.07268v1
- Date: Thu, 15 Apr 2021 06:41:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 02:58:16.189517
- Title: Weakly Supervised Video Anomaly Detection via Center-guided
Discriminative Learning
- Title(参考訳): 中心誘導型識別学習による弱監視ビデオ異常検出
- Authors: Boyang Wan, Yuming Fang, Xue Xia and Jiajie Mei
- Abstract要約: 監視ビデオの異常検出は、異常なビデオコンテンツと持続時間の多様性のために難しい作業です。
本稿では,トレーニング段階でビデオレベルラベルのみを必要とする異常回帰ネット(ar-net)と呼ばれる異常検出フレームワークを提案する。
本手法は,上海テクデータセットにおける映像異常検出に新たな最先端結果を与える。
- 参考スコア(独自算出の注目度): 25.787860059872106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in surveillance videos is a challenging task due to the
diversity of anomalous video content and duration. In this paper, we consider
video anomaly detection as a regression problem with respect to anomaly scores
of video clips under weak supervision. Hence, we propose an anomaly detection
framework, called Anomaly Regression Net (AR-Net), which only requires
video-level labels in training stage. Further, to learn discriminative features
for anomaly detection, we design a dynamic multiple-instance learning loss and
a center loss for the proposed AR-Net. The former is used to enlarge the
inter-class distance between anomalous and normal instances, while the latter
is proposed to reduce the intra-class distance of normal instances.
Comprehensive experiments are performed on a challenging benchmark:
ShanghaiTech. Our method yields a new state-of-the-art result for video anomaly
detection on ShanghaiTech dataset
- Abstract(参考訳): 監視ビデオにおける異常検出は、異常なビデオコンテンツと持続時間の多様性のため、難しい課題である。
本稿では,映像の異常検出を,低監督下での映像の異常スコアに対する回帰問題とみなす。
そこで,本研究では,訓練段階においてビデオレベルのラベルのみを必要とするAnomaly Regression Net (AR-Net) と呼ばれる異常検出フレームワークを提案する。
さらに,異常検出のための識別的特徴を学習するために,提案するar-netの動的多重インスタンス学習損失と中心損失をデザインする。
前者は異常と通常のインスタンス間のクラス間距離を拡大するために使用され、後者は通常のインスタンス間のクラス間距離を減らすために提案されている。
包括的な実験は、難しいベンチマークで行われている。
我々の手法は上海Techデータセットにおけるビデオ異常検出のための新しい最先端結果をもたらす
関連論文リスト
- VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs [64.60035916955837]
VANE-Benchはビデオの異常や矛盾を検出するためのビデオLMMの熟練度を評価するために設計されたベンチマークである。
我々のデータセットは、既存の最先端のテキスト・ビデオ生成モデルを用いて合成された一連のビデオから構成される。
我々は、このベンチマークタスクにおいて、オープンソースとクローズドソースの両方で既存の9つのビデオLMMを評価し、ほとんどのモデルが微妙な異常を効果的に識別するのに困難に直面することを発見した。
論文 参考訳(メタデータ) (2024-06-14T17:59:01Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
弱教師付きビデオ異常検出のための動的消去ネットワーク(DE-Net)を提案する。
まず,異なる長さのセグメントから特徴を抽出できるマルチスケール時間モデリングモジュールを提案する。
そして,検出された異常の完全性を動的に評価する動的消去戦略を設計する。
論文 参考訳(メタデータ) (2023-12-04T09:40:11Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Anomaly detection in surveillance videos using transformer based
attention model [3.2968779106235586]
本研究は、トレーニングビデオにおける異常セグメントの注釈付けを避けるために、弱教師付き戦略を用いることを示唆する。
提案するフレームワークは,実世界のデータセット,すなわちShanghaiTech Campusデータセットで検証される。
論文 参考訳(メタデータ) (2022-06-03T12:19:39Z) - Anomaly Crossing: A New Method for Video Anomaly Detection as
Cross-domain Few-shot Learning [32.0713939637202]
ビデオ異常検出は、ビデオで発生した異常事象を特定することを目的としている。
従来のアプローチのほとんどは、教師なしまたは半教師なしの手法で通常のビデオからのみ学習する。
本稿では,ビデオの異常検出に通常のビデオと異常ビデオの両方をフル活用することで,新たな学習パラダイムを提案する。
論文 参考訳(メタデータ) (2021-12-12T20:49:38Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
本稿では,複数の仮想シーンで構成された教師付きオープンセット・ベンチマークを提案する。
既存のデータセットとは異なり、トレーニング時に画素レベルでアノテートされた異常事象を導入する。
UBnormalは最先端の異常検出フレームワークの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2021-11-16T17:28:46Z) - Anomaly Detection in Video Sequences: A Benchmark and Computational
Model [25.25968958782081]
本稿では,ビデオシーケンスにおける異常検出のベンチマークとして,新しい大規模異常検出(LAD)データベースを提案する。
通常のビデオクリップや異常なビデオクリップを含む2000の動画シーケンスが含まれており、クラッシュ、火災、暴力など14の異常なカテゴリーがある。
ビデオレベルラベル(異常/正常ビデオ、異常タイプ)やフレームレベルラベル(異常/正常ビデオフレーム)を含むアノテーションデータを提供し、異常検出を容易にする。
完全教師付き学習問題として異常検出を解くために,マルチタスク深層ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-16T06:34:38Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - A Self-Reasoning Framework for Anomaly Detection Using Video-Level
Labels [17.615297975503648]
監視ビデオにおける異常事象の検出は、画像およびビデオ処理コミュニティの間で困難かつ実践的な研究課題である。
本稿では、ビデオレベルラベルのみを用いて自己推論方式で訓練されたディープニューラルネットワークに基づく、弱い教師付き異常検出フレームワークを提案する。
提案するフレームワークは,UCF-crimeやShanghaiTech,Ped2など,公開されている実世界の異常検出データセット上で評価されている。
論文 参考訳(メタデータ) (2020-08-27T02:14:15Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
ビデオ異常検出に自己学習深層順序回帰を適用することで,既存の手法の2つの重要な限界を克服できることを示す。
我々は,手動で正規/異常データをラベル付けすることなく,共同表現学習と異常スコアリングを可能にする,エンドツーエンドのトレーニング可能なビデオ異常検出手法を考案した。
論文 参考訳(メタデータ) (2020-03-15T08:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。